Bài tập 10 trang 49 SGK Hình học 12

Lý thuyết Bài tập
Câu hỏi:

Bài tập 10 trang 49 SGK Hình học 12

Cho hình chóp S.ABC có bốn đỉnh đếu nằm trên một mặt cầu, SA = a, SB = b, SC = c và ba cạnh SA, SB, SC đôi một vuông góc. Tính diện tích mặt cầu và thể tích khối cầu được tạo bởi mặt cầu đó

Hình bài 10 trang 49 SGK Hình học lớp 12

Gọi I là tâm cầu ngoại tiếp hình chóp tam giác S.ABC. Hạ IJ vuông góc (SAB), vì J cách đều 3 điểm S, A, B nên J cũng cách đều 3 điểm S, A, B.

Vì tam giác SAB vuông đỉnh S nên J là trung điểm của AB.

Ta có \(SJ = \frac{1}{2}AB = \frac{1}{2}\sqrt {{a^2} + {b^2}} \).

Do SC vuông góc (SAB) nên IJ // SC.

Gọi H là trung điểm SC, ta có SH = IJ = \(\frac{c}{2}\).

Do vậy, \(IS^2 = IJ^2 + SJ^2 = \frac{(a^2 + b^2 + c^2)}{4}\) và  bán kính hình cầu ngoại tiếp S.ABC là 

\(r=IS=\frac{1}{2}\sqrt{a^2+b^2+c^2}\)

Diện tích mặt cầu là:

\(S = 4 \pi r^2 = \pi (a^2 + b^2 + c^2)\) (đvdt)

 Thể tích khối cầu là:

 \(V=\frac{4}{3}\pi ^3=\frac{1}{6}\pi (a^2+b^2+c^2)^{\frac{3}{2}}= \frac{1}{6}\pi (a^2+b^2+c^2)\sqrt{a^2+b^2+c^2}\)(đvtt)

 

-- Mod Toán 12

Copyright © 2021 HOCTAP247