Tính
a) \(\frac{{{{10}^{2 + \sqrt 7 }}}}{{{2^{2 + \sqrt 7 }}{{.5}^{1 + \sqrt 7 }}}}\)
b) \(({4^{2\sqrt 3 }} - {4^{\sqrt 3 - 1}}){.2^{ - 2\sqrt 3 }}\)
a) \(\frac{{{{10}^{2 + \sqrt 7 }}}}{{{2^{2 + \sqrt 7 }}{{.5}^{1 + \sqrt 7 }}}} = \frac{{{{(2.5)}^{2 + \sqrt 7 }}}}{{{2^{2 + \sqrt 7 }}{{.5}^{1 + \sqrt 7 }}}} = \frac{{{2^{2 + \sqrt 7 }}{{.5}^{2 + \sqrt 7 }}}}{{{2^{2 + \sqrt 7 }}{{.5}^{1 + \sqrt 7 }}}} = 5\)
b)
\(\begin{array}{l}
({4^{2\sqrt 3 }} - {4^{\sqrt 3 - 1}}){.2^{ - 2\sqrt 3 }} = ({2^{4\sqrt 3 }} - {2^{2\sqrt 3 - 2}}){.2^{ - 2\sqrt 3 }}\\
= {2^{4\sqrt 3 - 2\sqrt 3 }} - {2^{2\sqrt 3 - 2 - 2\sqrt 3 }} = {2^{2\sqrt 3 }} - {2^{ - 2}} = {2^{2\sqrt 3 }} - \frac{1}{4}
\end{array}\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247