Giải các phương trình:
\(\begin{array}{*{20}{l}}
{a){{\log }_3}(\log _{0,5}^2x - 3{{\log }_{0,5}}x + 5) = 2}\\
{b){{\log }_2}({{4.3}^x} - 6) - {{\log }_2}({9^x} - 6) = 1}\\
{c)1 - \frac{1}{2}\log (2x - 1) = \frac{1}{2}\log (x - 9)}\\
{d)\frac{1}{6}{{\log }_2}(x - 2) - \frac{1}{3} = {{\log }_{\frac{1}{8}}}\sqrt {3x - 5} }
\end{array}\)
a)
\(\begin{array}{*{20}{l}}
{{{\log }_3}(\log _{0,5}^2x - 3{{\log }_{0,5}}x + 5) = 2}\\
{ \Leftrightarrow \log _{0,5}^2x - 3{{\log }_{0,5}}x + 5 = 9}\\
\begin{array}{l}
\Leftrightarrow \log _{0,5}^2x - 3{\log _{0,5}}x - 4 = 0\\
\Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{{{\log }_{0,5}}x = - 1}\\
{{{\log }_{0,5}}x = 4}
\end{array}} \right.
\end{array}\\
{ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{x = {{(0,5)}^{ - 1}} = 2}\\
{x = {{(0,5)}^4} = \frac{1}{{16}}}
\end{array}} \right.}
\end{array}\)
Vậy \(S = \left\{ {2;\frac{1}{{16}}} \right\}\)
b)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
{\log _2}({4.3^x} - 6) - {\log _2}({9^x} - 6) = 1\\
\Leftrightarrow {\log _2}({4.3^x} - 6) = {\log _2}2(9x - 6)
\end{array}\\
\begin{array}{l}
\Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{{9^x} - 6 > 0}\\
{{{4.3}^x} - 6 = 2({9^x} - 6)}
\end{array}} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
t > \sqrt 6 \,\,\left( {t = {3^x}} \right)\\
2{t^2} - 4t - 6 = 0
\end{array} \right.
\end{array}\\
{ \Leftrightarrow t = 3 \Leftrightarrow {3^x} = 3 \Leftrightarrow x = 1}
\end{array}\)
Vậy S = {1}
c) Điều kiện: x > 9
\(\begin{array}{*{20}{l}}
\begin{array}{l}
1 - \frac{1}{2}\log (2x - 1) = \frac{1}{2}\log (x - 9)\\
\Leftrightarrow 2 = \log (2x - 1) + \log (x - 9)
\end{array}\\
\begin{array}{l}
\Leftrightarrow \log (2x - 1)(x - 9) = 2\\
\Leftrightarrow (2x - 1)(x - 9) = 100
\end{array}\\
\begin{array}{l}
\Leftrightarrow 2{x^2} - 19x - 91 = 0\\
\Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{x = 13}\\
{x = - 3,5\left( L \right)}
\end{array}} \right.
\end{array}
\end{array}\)
Vậy x = 13
d) Điều kiện x > 2
Ta có:
\(\begin{array}{l}
{\log _{\frac{1}{8}}}\sqrt {3x - 5} = {\log _{{2^{ - 3}}}}{\left( {3x - 5} \right)^{\frac{1}{2}}}\\
= - \frac{1}{6}{\log _2}\left( {3x - 5} \right)
\end{array}\)
Phương trình đã có trở thành:
\(\begin{array}{*{20}{l}}
{\frac{1}{6}{{\log }_2}\left( {x - 2} \right) + \frac{1}{6}{{\log }_2}\left( {3x - 5} \right) = \frac{1}{3}}\\
{ \Leftrightarrow {{\log }_2}(x - 2)(3x - 5) = 2}\\
{ \Leftrightarrow (x - 2)(3x - 5) = 4}
\end{array}\)
⇔ x = 3 hoặc x = 2/3
Với điều kiện x > 2 ta chỉ nhận nghiệm x = 3.
Vậy S = {3}.
-- Mod Toán 12
Copyright © 2021 HOCTAP247