Chứng minh \(\sqrt[3]{{7 + 5\sqrt 2 }} + \sqrt[3]{{7 - 5\sqrt 2 }} = 2\)
Đặt \(x = \sqrt[3]{{7 + 5\sqrt 2 }} + \sqrt[3]{{7 - 5\sqrt 2 }}\)
Ta có:
\(\begin{array}{*{20}{l}}
{{x^3} = {{\left( {\sqrt[3]{{7 + 5\sqrt 2 }} + \sqrt[3]{{7 - 5\sqrt 2 }}} \right)}^3}}\\
\begin{array}{l}
= 7 + 5\sqrt 2 + 7 - 5\sqrt 2 + 3.\sqrt[3]{{{{\left( {7 + 5\sqrt 2 } \right)}^2}}}\\
.\sqrt[3]{{7 - 5\sqrt 2 }} + 3.\sqrt[3]{{7 + 5\sqrt 2 }}.\sqrt[3]{{{{\left( {7 - 5\sqrt 2 } \right)}^2}}}
\end{array}\\
{ = 14 - 3\left( {\sqrt[3]{{7 + 5\sqrt 2 }} + \sqrt[3]{{7 - 5\sqrt 2 }}} \right) = 14 - 3x}
\end{array}\)
Từ đó suy ra: \({x^3} + 3x - 14 = 0(1)\)
\(\begin{array}{l}
\left( 1 \right) \Leftrightarrow \left( {x - 2} \right)\left( {{x^2} + 2x + 7} \right) = 0\\
\Leftrightarrow x - 2 = 0 \Leftrightarrow x = 2
\end{array}\)
(Vì \({x^2} + 2x + 7 > 0\)
Vậy \(\sqrt[3]{{7 + 5\sqrt 2 }} + \sqrt[3]{{7 - 5\sqrt 2 }} = 2\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247