Giải các phương trình mũ sau:
a) \({2^{x + 4}} + {2^{x + 2}} = {5^{x + 1}} + {3.5^x}\)
b) \({5^{2x}} - {7^x} - {5^{2x}}.17 + {7^x}.17 = 0\)
c) \({4.9^x} + {12^x} - {3.16^x} = 0\)
d) \( - {8^x} + {2.4^x} + {2^x} - 2 = 0\)
a)
\(\begin{array}{l}
{2^{x + 4}} + {2^{x + 2}} = {5^{x + 1}} + {3.5^x}\\
\Leftrightarrow 16.{\left( {\frac{2}{5}} \right)^x} + 4.{\left( {\frac{2}{5}} \right)^x} = 5 + 3\\
\Leftrightarrow 20.{\left( {\frac{2}{5}} \right)^x} = 8 \Leftrightarrow {\left( {\frac{2}{5}} \right)^x} = \frac{2}{5}\\
\Leftrightarrow x = 1
\end{array}\)
b)
\(\begin{array}{l}
{5^{2x}} - {7^x} - {5^{2x}}.17 + {7^x}.17 = 0\\
\Leftrightarrow {16.7^x} - {16.5^x} = 0\\
\Leftrightarrow {7^x} = {5^x} \Leftrightarrow x = 0
\end{array}\)
c)
\(\begin{array}{l}
{4.9^x} + {12^x} - {3.16^x} = 0\\
\Leftrightarrow 4.{\left( {\frac{9}{{12}}} \right)^x} - 3.{\left( {\frac{{16}}{{12}}} \right)^x} + 1 = 0\\
\Leftrightarrow 4.{\left( {\frac{3}{4}} \right)^x} - 3.{\left( {\frac{4}{3}} \right)^x} + 1 = 0\\
\Leftrightarrow 4.{\left( {\frac{3}{4}} \right)^{2x}} + {\left( {\frac{3}{4}} \right)^x} - 3 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
{\left( {\frac{3}{4}} \right)^x} = - 1\,\,\left( l \right)\\
{\left( {\frac{3}{4}} \right)^x} = \frac{3}{4}
\end{array} \right. \Leftrightarrow x = 1
\end{array}\)
d)
\(\begin{array}{l}
- {8^x} + {2.4^x} + {2^x} - 2 = 0\\
\Leftrightarrow - {2^{3x}} + {2.2^{2x}} + {2^x} - 2 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
{2^x} = 1\\
{2^x} = - 1\,\,\left( l \right)\\
{2^x} = 1
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = 1
\end{array} \right.
\end{array}\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247