Tính đạo hàm của các hàm số sau :
a) \(y = \frac{1}{{{{(2 + 3x)}^2}}}\)
b) \(y = \sqrt[3]{{{{(3x - 2)}^2}}}\,\,\,\left( {x \ne \frac{2}{3}} \right)\)
c) \(y = \frac{1}{{\sqrt[3]{{3x - 7}}}}\)
d) \(y = 3{x^{ - 3}} - {\log _3}x\)
e) \(y = (3{x^2} - 2){\log _2}x\)
g) \(y = \ln (\cos x)\)
h) \(y = {e^x}\sin x\)
i) \(y = \frac{{{e^x} + {e^{ - x}}}}{x}\)
a) \(y\prime = \frac{{ - 2.3\left( {2 + 3x} \right)}}{{{{\left( {2 + 3x} \right)}^4}}} = \frac{{ - 6}}{{{{\left( {2 + 3x} \right)}^3}}}a\)
b) \(y = {\left( {3x - 2} \right)^{\frac{2}{3}}} \Rightarrow y\prime = \frac{2}{3}.3.{\left( {3x - 2} \right)^{\frac{2}{3} - 1}} = 2{\left( {3x - 2} \right)^{\frac{{ - 1}}{3}}}\)
c) \(y = {\left( {3x - 7} \right)^{\frac{{ - 1}}{3}}} \Rightarrow y\prime = - \frac{1}{3}.3.{\left( {3x - 7} \right)^{\frac{{ - 1}}{3} - 1}} = - {\left( {3x - 7} \right)^{\frac{{ - 4}}{3}}}\)
d) \(y\prime = 3.\left( { - 3} \right).{x^{ - 3 - 1}} - \frac{1}{{x\ln 3}} = - 9{x^{ - 4}} - \frac{1}{{x\ln 3}}\)
e) \(y\prime = 6x{\log _2}x + \frac{{3{x^2} - 2}}{{x\ln 2}}\)
g) \(y\prime = - \frac{{\sin x}}{{\cos x}} = - \tan x\)
h) \(y\prime = {e^x}\sin x + {e^x}\cos x\)
i) \(y\prime = \frac{{\left( {{e^x} - {e^{ - x}}} \right)x - \left( {{e^x} + {e^{ - x}}} \right)}}{{{x^2}}} = \frac{{\left( {x - 1} \right)\left( {{e^x} - {e^{ - x}}} \right)}}{{{x^2}}}\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247