Giải các bất phương trình mũ sau :
a) \({(8,4)^{\frac{{x - 3}}{{{x^2} + 1}}}} < 1\)
b) \({2^{|x - 2|}} > {4^{|x + 1|}}\)
c) \(\frac{{{4^x} - {2^{x + 1}} + 8}}{{{2^{1 - x}}}} < {8^x}\)
d) \(\frac{1}{{{3^x} + 5}} \le \frac{1}{{{3^{x + 1}} - 1}}\)
a)
{\left( {8,4} \right)^{\frac{{x - 3}}{{{x^2} + 1}}}} < 1\\
\Leftrightarrow \frac{{x - 3}}{{{x^2} + 1}} < {\log _{8,4}}1 = 0\\
\Leftrightarrow x - 3 < 0\\
\Leftrightarrow x < 3
\end{array}\)
b)
\(\begin{array}{l}
{2^{|x - 2|}} > {4^{|x + 1|}}\\
\Leftrightarrow {2^{|x - 2|}} > {2^{2|x + 1|}}\\
\Leftrightarrow |x - 2| > 2|x + 1|\\
\Leftrightarrow {x^2} - 4x + 4 > 4{x^2} + 8x + 4\\
\Leftrightarrow 3{x^2} + 12x < 0\\
\Leftrightarrow - 4 < x < 0
\end{array}\)
c)
\frac{{{4^x} - {2^{x + 1}} + 8}}{{{2^{1 - x}}}} < {8^x}\\
\Leftrightarrow {4^x} - {2^{x + 1}} + 8 < {2^{1 - x}}{.2^{3x}}\\
\Leftrightarrow {2^{2x}} - {2.2^x} + 8 < {2^{2x + 1}}\\
\Leftrightarrow - {2^{2x}} - {2.2^x} + 8 < 0\\
\Leftrightarrow \left[ \begin{array}{l}
{2^x} < - 4\,\,\left( l \right)\\
{2^x} > 2
\end{array} \right.\\
\Leftrightarrow x > 1
\end{array}\)
d)
\(\begin{array}{l}
\frac{1}{{{3^x} + 5}} \le \frac{1}{{{3^{x + 1}} - 1}}\\
\Leftrightarrow \frac{1}{{{3^x} + 5}} - \frac{1}{{{3^{x + 1}} - 1}} \le 0\\
\Leftrightarrow \frac{{{{3.3}^x} - 1 - ({3^x} + 5)}}{{({3^x} + 5)({{3.3}^x} - 1)}} \le 0\\
\Leftrightarrow \frac{{{{2.3}^x} - 6}}{{({3^x} + 5)({{3.3}^x} - 1)}} \le 0\\
\Leftrightarrow \frac{1}{3} < {3^x} \le 3 \Leftrightarrow - 1 < x \le 1
\end{array}\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247