Giải các phương trình sau :
a) \({e^2} + \ln x = x + 3\)
b) \({3^{4 - \ln x}} = x\)
c) \((5 - x)\log (x - 3) = 0\)
a) ĐK:
\(\begin{array}{l}
{e^{2 + \ln x}} = x + 3\\
\Leftrightarrow {e^2}.{e^{\ln x}} = x + 3\\
\Leftrightarrow {e^2}.x - x = 3\\
\Leftrightarrow x = \frac{3}{{{e^2} - 1}}
\end{array}\)
b) ĐK:
\(\begin{array}{l}
{e^{4 - \ln x}} = x \Leftrightarrow \frac{{{e^4}}}{{{e^{\ln x}}}} = x\\
\Leftrightarrow {x^2} = {e^4}\\
\Leftrightarrow x = {e^2}
\end{array}\)
c) ĐK:
\(\begin{array}{l}
\left( {5 - x} \right)\log \left( {x - 3} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
5 - x = 0\\
\log \left( {x - 3} \right) = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 5\\
x - 3 = 1
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 5\\
x = 4
\end{array} \right.
\end{array}\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247