Giải các phương trình sau :
a) \(\ln (4x + 2) - \ln (x - 1) = \ln x\)
b) \({\log _2}(3x + 1){\log _3}x = 2{\log _2}(3x + 1)\)
c) \({2^{{{\log }_3}{x^2}}}{.5^{{{\log }_3}x}} = 400\)
d) \({\ln ^3}x - 3{\ln ^2}x - 4\ln x + 12 = 0\)
a) ĐK: \(\left\{ \begin{array}{l}
4x + 2 > 0\\
x - 1 > 0\\
x > 0
\end{array} \right. \Leftrightarrow x > 1\)
\ln \left( {4x + 2} \right) - \ln \left( {x - 1} \right) = \ln x\\
\Leftrightarrow \ln \left( {4x + 2} \right) = \ln x + \ln \left( {x - 1} \right)\\
\Rightarrow 4x + 2 = x\left( {x - 1} \right)\\
\Leftrightarrow {x^2} - 5x - 2 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{{5 + \sqrt {33} }}{2}\\
x = \frac{{5 - \sqrt {33} }}{2}\,\,\left( l \right)
\end{array} \right.
\end{array}\)
b) ĐK: \(\left\{ \begin{array}{l}
3x + 1 > 0\\
x > 0
\end{array} \right. \Leftrightarrow x > 0\)
\(\begin{array}{l}
{\log _2}\left( {3x + 1} \right){\log _3}x = 2{\log _2}\left( {3x + 1} \right)\\
\Leftrightarrow {\log _2}\left( {3x + 1} \right)\left( {{{\log }_3}x - 2} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
{\log _2}\left( {3x + 1} \right) = 0\\
{\log _3}x = 2
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
3x + 1 = 1\\
x = {3^2}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 0\,\,\left( l \right)\\
x = 9
\end{array} \right.
\end{array}\)
c) ĐK:
{2^{{{\log }_3}{x^2}}}{.5^{{{\log }_3}x}} = 400\\
\Leftrightarrow {2^{2{{\log }_3}x}}{.5^{{{\log }_3}x}} = 400\\
\Leftrightarrow {20^{{{\log }_3}x}} = {20^2}\\
\Leftrightarrow {\log _3}x = 2\\
\Leftrightarrow x = 9\,\,\left( n \right)
\end{array}\)
d) ĐK:
\(\begin{array}{l}
{\ln ^3}x - 3{\ln ^2}x - 4\ln x + 12 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\ln x = - 2\\
\ln x = 3\\
\ln x = 2
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = {e^{ - 2}}\\
x = {e^3}\\
x = {e^2}
\end{array} \right.
\end{array}\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247