Lý thuyết Bài tập
Câu hỏi:

Bài tập 2.71 trang 134 SBT Toán 12

Giải các bất phương trình lôgarit sau :

a) \(\frac{{\ln x + 2}}{{\ln x - 1}} < 0\)

b) \(\log _{0,2}^2x - {\log _{0,2}}x - 6 \le 0\)

c) \(\log ({x^2} - x - 2) < 2\log (3 - x)\)

d) \(\ln |x - 2| + \ln |x + 4| \le 3\ln 2\)

a) ĐK: 

\(\begin{array}{l}
\frac{{\ln x + 2}}{{\ln x - 1}} < 0\\
 \Leftrightarrow  - 2 < \ln x < 1\\
 \Leftrightarrow {e^{ - 2}} < x < e
\end{array}\)

b) ĐK: 

\(\begin{array}{l}
\log _{0,2}^2x - {\log _{0,2}}x - 6 \le 0\\
 \Leftrightarrow  - 2 \le {\log _{0,2}}x \le 3\\
 \Leftrightarrow 0,{2^3} \le x \le 0,{2^{ - 2}}
\end{array}\)

c) ĐK: \(\left\{ \begin{array}{l}
{x^2} - x - 2 > 0\\
3 - x > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
x <  - 1\\
x > 2
\end{array} \right.\\
x < 3
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x <  - 1\\
2 < x < 3
\end{array} \right.\) 

\(\begin{array}{l}
\log \left( {{x^2} - x - 2} \right) < 2\log \left( {3 - x} \right)\\
 \Leftrightarrow \log \left( {{x^2} - x - 2} \right) < \log {\left( {3 - x} \right)^2}\\
 \Leftrightarrow {x^2} - x - 2 < 9 - 6x + {x^2}\\
 \Leftrightarrow 5x - 11 < 0\\
 \Leftrightarrow x < \frac{{11}}{5}
\end{array}\)

Kết hợp điều kiện: \(x \in \left( { - \infty ; - 1} \right) \cup \left( {2;\frac{{11}}{5}} \right)\)

d) 

\(\begin{array}{l}
\ln |x - 2| + \ln |x + 4| \le 3\ln 2\\
 \Leftrightarrow \ln |(x - 2)(x + 4)| \le \ln 8\\
 \Leftrightarrow \left| {{x^2} + 2x - 8} \right| \le 8\\
 \Leftrightarrow \left\{ \begin{array}{l}
{x^2} + 2x - 8 \ge  - 8\\
{x^2} + 2x - 8 \le 8
\end{array} \right.\\
 \Leftrightarrow \left\{ \begin{array}{l}
{x^2} + 2x \ge 0\\
{x^2} + 2x - 16 \le 0
\end{array} \right.\\
 \Leftrightarrow \left\{ \begin{array}{l}
x \le 2 \vee x \ge 0\\
 - 1 - \sqrt {17}  \le x \le  - 1 + \sqrt {17} 
\end{array} \right.\\
 \Leftrightarrow \left[ \begin{array}{l}
 - 1 - \sqrt {17}  \le x \le 2\\
0 \le x \le  - 1 + \sqrt {17} 
\end{array} \right.
\end{array}\)

 

-- Mod Toán 12

Copyright © 2021 HOCTAP247