Giải các phương trình sau:
\(\begin{array}{*{20}{l}}
{a){{(2 + \sqrt 3 )}^{2x}} = 2 - \sqrt 3 }\\
{b){2^{{x^2} - 3x + 2}} = 4}\\
{c){{2.3}^{x + 1}} - {{6.3}^{x - 1}} - {3^x} = 9}\\
{d){{\log }_3}({3^x} + 8) = 2 + x.}
\end{array}\)
a) Ta có: \(\left( {2 + \sqrt 3 } \right)\left( {2 - \sqrt 3 } \right) = 1\)
Nên \(2 - \sqrt 3 = \frac{1}{{2 + \sqrt 3 }} = {\left( {2 + \sqrt 3 } \right)^{ - 1}}\)
\(\begin{array}{l}
{(2 + \sqrt 3 )^{2x}} = 2 - \sqrt 3 \\
\Leftrightarrow {(2 + \sqrt 3 )^{2x}} = {(2 + \sqrt 3 )^{ - 1}}\\
\Leftrightarrow 2x = - 1 \Leftrightarrow x = \frac{{ - 1}}{2}
\end{array}\)
Vậy tập nghiệm phương trình \(S = \left\{ { - \frac{1}{2}} \right\}\)
b)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
{2^{{x^2} - 3x + 2}} = 4 \Leftrightarrow {2^{{x^2} - 3x + 2}} = {2^2}\\
\Leftrightarrow {x^2} - 3x + 2 = 2\\
\Leftrightarrow {x^2} - 3x = 0
\end{array}\\
{ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{x = 0}\\
{x = 3}
\end{array}} \right.}
\end{array}\)
Vậy S = {0; 3}
c)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
{2.3^{x + 1}} - {6.3^{x - 1}} - {3^x} = 9\\
\Leftrightarrow {6.3^x} - \frac{6}{3}{.3^x} - {3^x} = 9
\end{array}\\
\begin{array}{l}
\Leftrightarrow {3.3^x} = 9 \Leftrightarrow {3^x} = 3\\
\Leftrightarrow x = 1
\end{array}
\end{array}\)
Vậy S = {1}
d)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
{\log _3}({3^x} + 8) = 2 + x\\
\Leftrightarrow {3^x} + 8 = {3^{2 + x}}
\end{array}\\
\begin{array}{l}
\Leftrightarrow {3^x} + 8 = {9.3^x}\\
\Leftrightarrow {8.3^x} = 8\\
\Leftrightarrow {3^x} = 1 \Leftrightarrow x = 0
\end{array}
\end{array}\)
Vậy S = {0}
-- Mod Toán 12
Copyright © 2021 HOCTAP247