Giải các phương trình lôgarit sau:
a) \({{{\log }_2}\left( {{2^x} + 1} \right).{{\log }_2}\left( {{2^{x + 1}} + 2} \right) = 2}\)
b) \({{x^{\log 9}} + {9^{\log x}} = 6}\)
c) \({{x^{\log 9}} + {9^{\log x}} = 6}\)
d) \({1 + 2{{\log }_{x + 2}}5 = {{\log }_5}\left( {x + 2} \right)}\)
a)
\(\begin{array}{l}
{\log _2}({2^x} + 1).{\log _2}({2^{x + 1}} + 2) = 2\\
\Leftrightarrow {\log _2}({2^x} + 1).[1 + {\log _2}({2^x} + 1)] = 2\\
\Leftrightarrow \log _2^2({2^x} + 1) + \log ({2^x} + 1) - 2 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
{\log _2}({2^x} + 1) = 1\\
{\log _2}({2^x} + 1) = - 2
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
{2^x} + 1 = 2\\
{2^x} + 1 = \frac{1}{4}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
{2^x} = 1\\
{2^x} = - \frac{3}{4}\,\,\left( l \right)
\end{array} \right. \Leftrightarrow x = 0
\end{array}\)
b) ĐKXĐ: x > 0
\({\log \left( {{x^{\log 9}}} \right) = \log 9.\log x = \log \left( {{9^{\log x}}} \right) \Rightarrow {x^{\log 9}} = {9^{\log x}}}\)
Do đó, ta có:
{x^{\log 9}} + {9^{\log x}} = 6\\
\Leftrightarrow {x^{\log 9}} = 3\\
\Leftrightarrow \log 9.\log x = \log 3\\
\Leftrightarrow \log x = \frac{{\log 3}}{{\log 9}}\\
\Leftrightarrow \log x = \frac{1}{2}\\
\Leftrightarrow x = \sqrt {10}
\end{array}\)
c) ĐKXĐ:
{x^{3{{\log }^3}x}} - \frac{2}{3}\log x = 100\sqrt[3]{{10}}\\
\Leftrightarrow \left( {3{{\log }^3}x - \frac{2}{3}\log x} \right)\log x = 2 + \frac{1}{3}\\
\Leftrightarrow 3{\log ^4}x - \frac{2}{3}{\log ^2}x = \frac{7}{3}\\
\Leftrightarrow 9{\log ^4}x - 2{\log ^2}x - 7 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
{\log ^2}x = 1\\
{\log ^2}x = - 1\,\,\left( l \right)
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\log x = 1\\
\log x = - 1
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 10\\
x = \frac{1}{{10}}
\end{array} \right.
\end{array}\)
d) ĐKXĐ: x > - 2
1 + 2{\log _{x + 2}}5 = {\log _5}\left( {x + 2} \right)\\
\Leftrightarrow 1 + 2.\frac{1}{{{{\log }_5}\left( {x + 2} \right)}} = {\log _5}\left( {x + 2} \right)\\
\Leftrightarrow \log _5^2\left( {x + 2} \right) - {\log _5}\left( {x + 2} \right) - 2 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
{\log _5}\left( {x + 2} \right) = - 1\\
{\log _5}\left( {x + 2} \right) = 2
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x + 2 = \frac{1}{5}\\
x + 2 = 25
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = - \frac{9}{5}\\
x = 23
\end{array} \right.
\end{array}\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247