Giải các phương trình mũ sau:
a) \({(0,75)^{2x - 3}} = {\left( {1\frac{1}{3}} \right)^{5 - x}}\)
b) \({5^{{x^2} - 5x - 6}} = 1\)
c) \({\left( {\frac{1}{7}} \right)^{{x^2} - 2x - 3}} = {7^{x + 1}}\)
d) \({32^{\frac{{x + 5}}{{x - 7}}}} = 0,{25.125^{\frac{{x + 17}}{{x - 3}}}}\)
a)
\(\begin{array}{l}
{\left( {0,75} \right)^{2x - 3}} = {\left( {1\frac{1}{3}} \right)^{5 - x}}\\
\Leftrightarrow {\left( {\frac{3}{4}} \right)^{2x - 3}} = {\left( {\frac{4}{3}} \right)^{5 - x}} = {\left( {\frac{3}{4}} \right)^{x - 5}}\\
\Leftrightarrow 2x - 3 = x - 5\\
\Leftrightarrow x = - 2
\end{array}\)
b) \(5{x^2} - 5x - 6 = 1 \Leftrightarrow {x^2} - 5x - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}
x = - 1\\
x = 6
\end{array} \right.\)
c)
\(\begin{array}{l}
{\left( {\frac{1}{7}} \right)^{{x^2} - 2x - 3}} = {7^{x + 1}}\\
\Leftrightarrow {7^{ - {x^2} + 2x + 3}} = {7^{x + 1}}\\
\Leftrightarrow - {x^2} + 2x + 3 = x + 1\\
\Leftrightarrow - {x^2} + x + 2 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = - 1\\
x = 2
\end{array} \right.
\end{array}\)
d) ĐKXĐ: \(x \ne 7;x \ne 3\)
\(\begin{array}{l}
{32^{\frac{{x + 5}}{{x - 7}}}} = 0,{25.125^{\frac{{x + 17}}{{x - 3}}}}\\
\Leftrightarrow {2^{\frac{{5(x + 5)}}{{x - 7}}}} = \frac{1}{4}{.5^{\frac{{3(x + 17)}}{{x - 3}}}}\\
\Leftrightarrow {2^{\frac{{5(x + 5)}}{{x - 7}}}} + 2 = {5^{\frac{{3x + 51}}{{x - 3}}}}\\
\Leftrightarrow \frac{{5x + 25 + 2x - 14}}{{x - 7}} = \frac{{3x + 51}}{{x - 3}}.{\log _2}5\\
\Leftrightarrow \frac{{7x + 11}}{{x - 7}} = \frac{{3x + 51}}{{x - 3}}.{\log _2}5\\
\Rightarrow (7x + 11)(x - 3) = (3x + 51)(x - 7).{\log _2}5\\
\Leftrightarrow (7 - 3{\log _2}5).{x^2} - 2(5 + 15{\log _2}5)x - (33 - 357{\log _2}5) = 0
\end{array}\)
Ta có:
\({\rm{\Delta '}} = 1296\log _2^25 - 2448{\log _2}5 + 256 > 0\)
Phương trình có hai nghiệm
\(x = \frac{{5 + 15{{\log }_2}5 \pm \sqrt {{\rm{\Delta '}}} }}{{7 - 3{{\log }_2}5}}\) (TMĐK)
-- Mod Toán 12
Copyright © 2021 HOCTAP247