Hãy tính
a) \({\log _8}12{\rm{ }} - {\rm{ }}{\log _8}15{\rm{ }} + {\rm{ }}{\log _8}20\)
b) \(\frac{1}{2}{\log _7}36 - {\log _7}14 - 3{\log _7}\sqrt[3]{3}\)
c) \(\frac{{{{\log }_5}36 - {{\log }_5}12}}{{{{\log }_5}9}}\)
d) \({36^{{{\log }_6}5}} + {10^{1 - \log 2}} - {8^{{{\log }_2}3}}.\)
a)
\(\begin{array}{l}
{\log _8}12 - {\log _8}15 + {\log _8}20\\
= {\log _8}\frac{{12.20}}{{15}} = {\log _8}16\\
= {\log _{{2^3}}}{2^4} = \frac{4}{3}
\end{array}\)
b)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
\frac{1}{2}{\log _7}36 - {\log _7}14 - 3{\log _7}\sqrt[3]{3}\\
= {\log _7}6 - {\log _7}14 - {\log _7}21
\end{array}\\
\begin{array}{l}
= {\log _7}\frac{6}{{14.21}} = {\log _7}\frac{1}{{49}}\\
= {\log _7}{7^{ - 2}} = - 2
\end{array}
\end{array}\)
c)
\(\begin{array}{l}
\frac{{{{\log }_5}36 - {{\log }_5}12}}{{{{\log }_5}9}}\\
= \frac{{{{\log }_5}\frac{{36}}{{12}}}}{{{{\log }_5}{3^2}}} = \frac{{{{\log }_5}3}}{{2{{\log }_5}3}} = \frac{1}{2}
\end{array}\)
d)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
{36^{{{\log }_6}5}} + {10^{1 - \log 2}} - {8^{{{\log }_2}3}}\\
= {6^{2{{\log }_6}5}} + {10^{{{\log }_{10}}\frac{{10}}{2}}} - {2^{{{\log }_2}27}}
\end{array}\\
\begin{array}{l}
= {6^{\log {{65}^2}}} + {10^{{{\log }_{10}}5}} - {2^{{{\log }_2}27}}\\
= 25 + 5 - 27 = 3
\end{array}
\end{array}\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247