Đơn giản biểu thức:
a) \({a^{ - 2\sqrt 2 }}{\left( {\frac{1}{{{a^{ - \sqrt 2 - 1}}}}} \right)^{\sqrt 2 + 1}}\)
b) \({\left( {\frac{{{a^{\sqrt 3 }}}}{{{b^{\sqrt 3 - 1}}}}} \right)^{\sqrt 3 + 1}}\frac{{{a^{ - 1 - \sqrt 3 }}}}{{{b^{ - 2}}}}\)
c) \(\frac{{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1\)
d) \(\sqrt {{{({x^\pi } + {y^\pi })}^2} - {{({4^{\frac{1}{\pi }}}xy)}^\pi }} \)
a)
\(\begin{array}{l}
{a^{ - 2\sqrt 2 }}{\left( {\frac{1}{{{a^{ - \sqrt 2 - 1}}}}} \right)^{\sqrt 2 + 1}}\\
= {a^{ - 2\sqrt 2 }}{\left( {{a^{\sqrt 2 + 1}}} \right)^{\sqrt 2 + 1}}\\
= {a^{ - 2\sqrt 2 }}.{a^{3 + 2\sqrt 3 }} = {a^3}
\end{array}\)
b)
\(\begin{array}{l}
{\left( {\frac{{{a^{\sqrt 3 }}}}{{{b^{\sqrt 3 - 1}}}}} \right)^{\sqrt 3 + 1}}\frac{{{a^{ - 1 - \sqrt 3 }}}}{{{b^{ - 2}}}}\\
= \frac{{{a^{3 + \sqrt 3 }}}}{{{b^2}}}.\frac{{{a^{ - 1 - \sqrt 3 }}}}{{{b^{ - 2}}}} = {a^2}
\end{array}\)
c)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
\frac{{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1\\
= \frac{{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }} + {{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}}{{{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}}
\end{array}\\
\begin{array}{l}
= \frac{{2{a^{2\sqrt 2 }} - 2{a^{\sqrt 2 }}{b^{\sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}}\\
= \frac{{2{a^{\sqrt 2 }}\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}}{{{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} = \frac{{2{a^{\sqrt 2 }}}}{{{a^{\sqrt 2 }} - {b^{\sqrt 3 }}}}
\end{array}
\end{array}\)
d)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
\sqrt {{{({x^\pi } + {y^\pi })}^2} - {{({4^{\frac{1}{\pi }}}xy)}^\pi }} \\
= \sqrt {({x^{2\pi }} + {y^{2\pi }} - 2x{y^\pi }}
\end{array}\\
{ = \sqrt {{{({x^\pi } - {y^\pi })}^2}} = |{x^\pi } - {y^\pi }|}
\end{array}\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247