Cho x < 0. Chứng minh rằng:
\(\sqrt {\frac{{ - 1 + \sqrt {1 + \frac{1}{4}{{({2^x} - {2^{ - x}})}^2}} }}{{1 + \sqrt {1 + \frac{1}{4}{{({2^x} - {2^{ - x}})}^2}} }}} = \frac{{1 - {2^x}}}{{1 + {2^x}}}\)
Ta có:
\(\begin{array}{l}
1 + \frac{1}{4}{({2^x} - {2^{ - x}})^2} = \frac{1}{4}(4 + {4^x} - 2 + {4^{ - x}})\\
= \frac{1}{4}({4^x} + 2 + {4^{ - x}}) = \frac{1}{4}{({2^x} + {2^{ - x}})^2}
\end{array}\)
Do đó:
\(\begin{array}{*{20}{l}}
\begin{array}{l}
\sqrt {\frac{{ - 1 + \sqrt {1 + \frac{1}{4}{{({2^x} - {2^{ - x}})}^2}} }}{{1 + \sqrt {1 + \frac{1}{4}{{({2^x} - {2^{ - x}})}^2}} }}} \\
= \sqrt {\frac{{ - 1 + \frac{1}{2}({2^x} + {2^{ - x}})}}{{1 + \frac{1}{2}({2^x} + {2^{ - x}})}}}
\end{array}\\
\begin{array}{l}
= \sqrt {\frac{{{2^x} - 2 + {2^{ - x}}}}{{{2^x} + 2 + {2^{ - x}}}}} = \sqrt {\frac{{{2^x} - 2 + \frac{1}{{{2^x}}}}}{{{2^x} + 2 + \frac{1}{{{2^x}}}}}} \\
= \sqrt {\frac{{{4^x} - {{2.2}^x} + 1}}{{{4^x} + {{2.2}^x} + 1}}}
\end{array}\\
{ = \sqrt {\frac{{{{\left( {{2^x} - 1} \right)}^2}}}{{{{\left( {{2^x} + 1} \right)}^2}}}} = \frac{{1 - {2^x}}}{{1 + {2^x}}}}
\end{array}\)
(vì x < 0 thì 2x < 1)
-- Mod Toán 12
Copyright © 2021 HOCTAP247