Giải các bất phương trình mũ sau :
b) \({4^{|x + 1|}} > 16\)
c) \({2^{ - {x^2} + 3x}} < 4\)
d) \({\left( {\frac{7}{9}} \right)^{2{x^2} - 3x}} \ge \frac{9}{7}\)
e) \({11^{\sqrt {x + 6} }} \ge {11^x}\)
g) \({2^{2x - 1}} + {2^{2x - 2}} + {2^{2x - 3}} \ge 448\)
h) \({16^x} - {4^x} - 6 \le 0\)
i) \(\frac{{{3^x}}}{{{3^x} - 2}} < 3\)
a)
\(\begin{array}{l}
{3^{|x - 2|}} < 9 = {3^2}\\
\Leftrightarrow |x - 2| < 2\\
\Leftrightarrow - 2 < x - 2 < 2\\
\Leftrightarrow 0 < x < 4
\end{array}\)
b)
\(\begin{array}{l}
{4^{|x + 1|}} > 16 = {4^2}\\
\Leftrightarrow |x + 1| > 2\\
\Leftrightarrow \left[ \begin{array}{l}
x + 1 < - 2\\
x + 1 > 2
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x < - 3\\
x > 1
\end{array} \right.
\end{array}\)
c)
\(\begin{array}{l}
{2^{ - {x^2} + 3x}} < 4 = {2^2}\\
\Leftrightarrow - {x^2} + 3x < 2\\
\Leftrightarrow - {x^2} + 3x - 2 < 0\\
\Leftrightarrow \left[ \begin{array}{l}
x < 1\\
x > 2
\end{array} \right.
\end{array}\)
d)
\(\begin{array}{l}
{\left( {\frac{7}{9}} \right)^{2{x^2} - 3x}} \ge \frac{9}{7} = {\left( {\frac{7}{9}} \right)^{ - 1}}\\
\Leftrightarrow 2{x^2} - 3x \le - 1\\
\Leftrightarrow 2{x^2} - 3x + 1 \le 0\\
\Leftrightarrow x \in [12;1]
\end{array}\)
e) ĐK: \(x \ge - 6\)
\({11^{\sqrt {x + 6} }} \ge {11^x} \Leftrightarrow \sqrt {x + 6} \ge x\)
+) Luôn đúng với \(x \in [ - 6;0]\)
+) Nếu , ta có:
\(\begin{array}{l}
x + 6 \ge {x^2}\\
\Leftrightarrow {x^2} - x - 6 \le 0\\
\Leftrightarrow \left( {x - 3} \right)\left( {x + 2} \right) \le 0\\
\Leftrightarrow x \in \left[ { - 2;3} \right]
\end{array}\)
Vậy \(x \in [ - 6;0] \cup [ - 2;3] = [ - 6;3]\)
g)
\(\begin{array}{l}
{2^{2x - 1}} + {2^{2x - 2}} + {2^{2x - 3}} \ge 448\\
\Leftrightarrow {2^{2x - 3}}({2^2} + 2 + 1) \ge 448\\
\Leftrightarrow {2^{2x - 3}} \ge 64 = {2^6}\\
\Leftrightarrow 2x - 3 \ge 6\\
\Leftrightarrow x \ge \frac{9}{2}
\end{array}\)
h)
\(\begin{array}{l}
{16^x} - {4^x} - 6 \le 0\\
\Leftrightarrow {4^{2x}} - {4^x} - 6 \le 0\\
\Leftrightarrow ({4^x} - 3)({4^x} + 2) \le 0\\
\Leftrightarrow 4x - 3 \le 0\,\,\,({4^x} + 2 > 0,\forall x)\\
\Leftrightarrow x \le {\log _4}3
\end{array}\)
i)
\(\begin{array}{l}
\frac{{{3^x}}}{{{3^x} - 2}} < 3\\
\Leftrightarrow \frac{{{3^x}}}{{{3^x} - 2}} - 3 < 0\\
\Leftrightarrow \frac{{{3^x} - 3\left( {{3^x} - 2} \right)}}{{{3^x} - 2}} < 0\\
\Leftrightarrow \frac{{ - {{2.3}^x} + 6}}{{{3^x} - 2}} < 0\\
\Leftrightarrow \left[ \begin{array}{l}
{3^x} > 3\\
{3^x} < 2
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x > 1\\
x < {\log _3}2
\end{array} \right.
\end{array}\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247