Đơn giản biểu thức
\(\frac{{{{\left( {{a^{\sqrt 3 - 1}}} \right)}^{\sqrt 3 + 1}}}}{{{a^{\sqrt 5 - 3}}.{a^{4 - \sqrt 5 }}}}\); \({a^{\sqrt 2 }}.{\left( {\frac{1}{a}} \right)^{\sqrt 2 - 1}}\)
\(\begin{array}{*{20}{l}}
{\frac{{{{\left( {{a^{\sqrt 3 - 1}}} \right)}^{\sqrt 3 + 1}}}}{{{a^{\sqrt 5 - 3}}.{a^{4 - \sqrt 5 }}}} = \frac{{{a^{\left( {\sqrt 3 - 1} \right).\left( {\sqrt 3 + 1} \right)}}}}{{{a^{\sqrt 5 - 3}}.{a^{4 - \sqrt 5 }}}} = \frac{{{a^2}}}{{{a^1}}} = a}\\
\begin{array}{l}
{a^{\sqrt 2 }}.{\left( {\frac{1}{a}} \right)^{\sqrt 2 - 1}} = {a^{\sqrt 2 }}.{\left( {{a^{ - 1}}} \right)^{\sqrt 2 - 1}}\\
= {a^{\sqrt 2 }}.{a^{1 - \sqrt 2 }} = {a^{\sqrt 2 + 1 - \sqrt 2 }} = a
\end{array}
\end{array}\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247