Giải các phương trình sau:
a) \({\log _2}x + {\log _4}x = {\log _{\frac{1}{2}}}\sqrt 3 \)
b) \({\log _{\sqrt 3 }}x.{\log _3}x.{\log _9}x = 8\)
a) Điều kiện: x > 0
\(\begin{array}{*{20}{l}}
\begin{array}{l}
{\log _2}x + {\log _4}x = {\log _{\frac{1}{2}}}\sqrt 3 \\
\Leftrightarrow {\log _2}x + {\log _{{2^2}}}x = {\log _{{2^{ - 1}}}}\sqrt 3
\end{array}\\
\begin{array}{l}
\Leftrightarrow {\log _2}x + \frac{1}{2}{\log _2}x = - {\log _2}\sqrt 3 \\
\Leftrightarrow \frac{3}{2}{\log _2}x = {\log _2}\frac{1}{{\sqrt 3 }}
\end{array}\\
\begin{array}{l}
\Leftrightarrow {\log _2}x = {\log _2}{\left( {\frac{1}{{\sqrt 3 }}} \right)^{\frac{2}{3}}}\\
\Leftrightarrow x = \frac{1}{{\sqrt[3]{3}}}
\end{array}
\end{array}\)
Vậy \(S = \left\{ {\frac{1}{{\sqrt[3]{3}}}} \right\}\)
b) Điều kiện: x > 0
\(\begin{array}{*{20}{l}}
\begin{array}{l}
{\log _{\sqrt 3 }}x.{\log _3}x.{\log _9}x = 8\\
\Leftrightarrow {\log _{{3^{\frac{1}{2}}}}}x.{\log _3}x.{\log _{{3^2}}}x = 8
\end{array}\\
\begin{array}{l}
\Leftrightarrow \frac{1}{{\frac{1}{2}}}.\frac{1}{2}.{({\log _3}x)^3} = 8\\
\Leftrightarrow {\log _3}x = 2 \Leftrightarrow x = {3^2} = 9
\end{array}
\end{array}\)
Vậy S = {9}
-- Mod Toán 12
Copyright © 2021 HOCTAP247