Giải các phương trình sau:
\(\begin{array}{*{20}{l}}
{a){3^{4x}} = {4^{3x}}}\\
{b){3^{2 - {{\log }_3}x}} = 81x}\\
{c){3^x}{{.8}^{\frac{x}{{x + 1}}}} = 36}\\
{d){x^6}{{.5}^{ - {{\log }_x}5}} = {5^{ - 5}}}
\end{array}\)
a)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
{3^{4x}} = {4^{3x}}\\
\Leftrightarrow {4^x}{\log _3}3 = {3^x}{\log _3}4\\
\Leftrightarrow \frac{{{4^x}}}{{{3^x}}} = {\log _3}4
\end{array}\\
\begin{array}{l}
\Leftrightarrow {\left( {\frac{4}{3}} \right)^x} = {\log _3}4\\
\Leftrightarrow x = {\log _{\frac{4}{3}}}({\log _3}4)
\end{array}
\end{array}\)
Vậy \(S = \left\{ {{{\log }_{\frac{4}{3}}}({{\log }_3}4)} \right\}\)
b) Điều kiện x > 0
\(\begin{array}{*{20}{l}}
{{3^{2 - {{\log }_3}x}} = 81x \Leftrightarrow \frac{{{3^2}}}{{{3^{lo{g_3}x}}}} = 81x}\\
\begin{array}{l}
\Leftrightarrow \frac{9}{x} = 81x \Leftrightarrow {x^2} = \frac{1}{8}\\
\Leftrightarrow x = \frac{1}{3}\left( {x > 0} \right)
\end{array}
\end{array}\)
Vậy S = {1/3}
c) Lấy logarit cơ số 3 hai vế ta được:
\(\begin{array}{*{20}{l}}
\begin{array}{l}
x{\log _3}3 + \frac{x}{{x + 1}}{\log _3}8 = 2 + 2.{\log _3}2\\
\Leftrightarrow x + \frac{{3x}}{{x + 1}}{\log _3}2 = 2 + 2.{\log _3}2
\end{array}\\
\begin{array}{l}
\Leftrightarrow {x^2} + x + 3({\log _3}2)x\\
= 2x + 2 + 2(x + 1)({\log _3}2)
\end{array}\\
{ \Leftrightarrow {x^2} + ({{\log }_3}2 - 1)x - 2.{{\log }_3}2 - 2 = 0}\\
{ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{x = 2}\\
{x = - 1 - {{\log }_3}2}
\end{array}} \right.}
\end{array}\)
Vậy \(S = \left\{ {2; - 1 - {{\log }_3}2} \right\}\)
d) Điều kiện x > 0
Lấy logarit cơ số x hai vế ta được:
\(\begin{array}{*{20}{l}}
{6 + ( - {{\log }_x}5).{{\log }_x}5 = - 5{{\log }_x}5}\\
{ \Leftrightarrow \log _x^25 - 5{{\log }_x}5 - 6 = 0}\\
\begin{array}{l}
\Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{{{\log }_x}5 = - 1}\\
{{{\log }_x}5 = 6}
\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{5 = {x^{ - 1}}}\\
{5 = {x^6}}
\end{array}} \right.\\
\Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{x = \frac{1}{5}}\\
{x = \sqrt[6]{5}}
\end{array}} \right.
\end{array}
\end{array}\)
Vậy \(S = \left\{ {\frac{1}{5};\sqrt[6]{5}} \right\}\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247