Chứng minh rằng:
a) Nếu a, b là hai số cùng dấu thì \(\frac{a}{b} + \frac{b}{a} \ge 2\)
b) Nếu a, b là hai số trái dấu thì \(\frac{a}{b} + \frac{b}{a} \le - 2\)
a) Nếu a, b là hai số cùng dấu thì \(\frac{a}{b};\frac{b}{a}\) là hai số dương nên áp dụng bất đẳng thức Cô si ta có:
\(\frac{a}{b} + \frac{b}{a} \ge 2\sqrt {\frac{a}{b}.\frac{b}{a}} = 2\)
b) Nếu a, b là hai số trái dấu thì \( - \frac{a}{b}; - \frac{b}{a}\) là hai số dương nên áp dụng bất đẳng thức Cô si ta có:
\( - \frac{a}{b} + \left( { - \frac{b}{a}} \right) \ge 2 \Leftrightarrow \frac{a}{b} + \frac{b}{a} \le - 2\)
-- Mod Toán 10
Copyright © 2021 HOCTAP247