Giải các phương trình vầ bất phương trình sau:
a) |x2 – 5x + 4| = x2 + 6x + 5
b) |x – 1| = 2x – 1
c) |-x2 + x – 1| ≤ 2x + 5
d) |x2 – x| ≤ |x2 – 1|
a) Ta có:
\(\begin{array}{l}
\left| {{x^2} - 5x + 4} \right| = {x^2} + 6x + 5\\
\Leftrightarrow \left\{ \begin{array}{l}
{x^2} + 6x + 5 \ge 0\\
\left[ \begin{array}{l}
{x^2} - 5x + 4 = {x^2} + 6x + 5\\
{x^2} - 5x + 4 = - {x^2} - 6x - 5
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
x \le - 5\\
x \ge - 1
\end{array} \right.\\
\left[ \begin{array}{l}
- 11x = 1\\
2{x^2} + x + 9 = 0\left( {vn} \right)
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
x \le - 5\\
x \ge - 1
\end{array} \right.\\
x = - \frac{1}{{11}}
\end{array} \right. \Leftrightarrow x = - \frac{1}{{11}}
\end{array}\)
Vậy \(S = \left\{ { - \frac{1}{{11}}} \right\}\)
b) Điều kiện: \(x \ge \frac{1}{2}\)
Ta có:
\(\begin{array}{l}
\left| {x - 1} \right| = 2x - 1\\
\Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{x - 1 = 2x - 1}\\
{x - 1 = 1 - 2x}
\end{array}} \right.\\
\Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{x = 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( l \right)}\\
{x = \frac{2}{3}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( n \right)}
\end{array}} \right.
\end{array}\)
Vậy tập nghiệm là \(S = \left\{ {\frac{2}{3}} \right\}\)
c) Vì - x2 + x – 1 < 0, ∀x ∈ R nên:
|- x2 + x – 1| ≤ 2x + 5
⇔ x2 – x + 1 ≤ 2x + 5
⇔ x2 – 3x + 4 ≤ 0
⇔ -1 ≤ x ≤ 4
Vậy S = [-1, 4]
d) Ta có:
|x2 – x| ≤ |x2 – 1|
⇔ (x2 – x)2 – (x2 – 1)2 ≤ 0
⇔ (1 – x)(2x2 – x – 1) ≤ 0
⇔ (x – 1)2(2x + 1) ≥ 0
\( \Leftrightarrow \left[ \begin{array}{l}
x = 1\\
2x + 1 \ge 0
\end{array} \right. \Leftrightarrow x \ge - \frac{1}{2}\)
Vậy \(S = \left[ { - \frac{1}{2}; + \infty } \right)\)
-- Mod Toán 10
Copyright © 2021 HOCTAP247