Bài tập 5 trang 79 SGK Đại số 10

Lý thuyết Bài tập
Câu hỏi:

Bài tập 5 trang 79 SGK Đại số 10

Chứng minh rằng:  \(x^4 - \sqrt{x^5} + x - \sqrt{x} + 1 > 0, \forall x \geq 0.\)

          

Ta có: \({x^4} - {x^5} + {x^2} - x + 1 = {x^8} - 2.{x^4}.\frac{x}{2} + \frac{{{x^2}}}{4} + \frac{{{x^2}}}{2} + \frac{{{x^2}}}{4} - x + 1\)

\( = {({x^4} - \frac{x}{2})^2} + \frac{{{x^2}}}{4} + {(\frac{x}{2} - 1)^2}\)

Mà \({({x^4} - \frac{x}{2})^2} \ge 0;\frac{{{x^2}}}{4} \ge 0;{(\frac{x}{2} - 1)^2} \ge 0\)

\( \Rightarrow {x^8} - {x^5} + {x^2} - x + 1 \ge 0\,\,\,\,(1)\)

Dấu “=” xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}{\left( {{x^4} - \frac{x}{2}} \right)^2} = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{{{x^4}}}{4} = 0\,\,vo\,\,ly\,\,\,\,\,\,\,(2)\\{\left( {\frac{x}{2} - 1} \right)^2} = 0\end{array} \right.\)

Từ (1) và (2), ta có: \({x^8} - {x^5} + {x^2} - x + 1 > 0\,\,\forall x.\)

 

-- Mod Toán 10

Copyright © 2021 HOCTAP247