Giải các bất phương trình
a) \(\frac{{x + 2}}{3} - x + 1 > x + 3\)
b) \(\frac{{3x + 5}}{2} - 1 \le \frac{{x + 2}}{3} + x\)
c) \(\left( {1 - \sqrt 2 } \right)x < 3 - 2\sqrt 2 \)
d) \({\left( {x + \sqrt 3 } \right)^2} \ge {\left( {x - \sqrt 3 } \right)^2} + 2\)
a)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
\frac{{x + 2}}{3} - x + 1 > x + 3\\
\Leftrightarrow x + 2 - 3x + 3 > 3x + 9
\end{array}\\
{ \Leftrightarrow - 5x > 4 \Leftrightarrow x < - \frac{4}{5}}
\end{array}\)
Vậy \(S = \left( { - \infty ; - \frac{4}{5}} \right)\)
b)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
\frac{{3x + 5}}{2} - 1 \le \frac{{x + 2}}{3} + x\\
\Leftrightarrow 9x + 15 - 6 \le 2x + 4 + 6x
\end{array}\\
{ \Leftrightarrow x \le - 5}
\end{array}\)
Vậy \(S = \left( { - \infty ; - 5} \right)\)
c)
\(\begin{array}{l}
\left( {1 - \sqrt 2 } \right)x < 3 - 2\sqrt 2 \\
\Leftrightarrow \left( {1 - \sqrt 2 } \right)x < {\left( {1 - \sqrt 2 } \right)^2}
\end{array}\)
\( \Leftrightarrow x > \frac{{{{\left( {1 - \sqrt 2 } \right)}^2}}}{{1 - \sqrt 2 }} = 1 - \sqrt 2 \)
(vì \(1 - \sqrt 2 < 0\))
Vậy \(S = \left( {1 - \sqrt 2 ; + \infty } \right)\)
d)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
{\left( {x + \sqrt 3 } \right)^2} \ge {\left( {x - \sqrt 3 } \right)^2} + 2\\
\Leftrightarrow {\left( {x + \sqrt 3 } \right)^2} - {\left( {x - \sqrt 3 } \right)^2} \ge 2
\end{array}\\
{ \Leftrightarrow 4\sqrt 3 x \ge 2 \Leftrightarrow x \ge \frac{1}{{2\sqrt 3 }}}
\end{array}\)
Vậy \(S = \left[ {\frac{1}{{2\sqrt 3 }}; + \infty } \right)\)
-- Mod Toán 10
Copyright © 2021 HOCTAP247