Giải các hệ bất phương trình
a) \(\left\{ \begin{array}{l}
5x - 2 > 4x + 5\\
5x - 4 < x + 2
\end{array} \right.\)
b) \(\left\{ \begin{array}{l}
2x + 1 > 3x + 4\\
5x + 3 \ge 8x - 9
\end{array} \right.\)
a)
\(\begin{array}{l}
\left\{ {\begin{array}{*{20}{l}}
{5x - 2 > 4x + 5}\\
{5x - 4 < x + 2}
\end{array}} \right.\\
\Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{x > 7}\\
{4x < 6}
\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{x > 7}\\
{x < \frac{3}{2}}
\end{array}} \right.
\end{array}\)
(vô nghiệm)
Vậy \(S = \emptyset \)
b)
\(\begin{array}{l}
\left\{ {\begin{array}{*{20}{l}}
{2x + 1 > 3x + 4}\\
{5x + 3 \ge 8x - 9}
\end{array}} \right.\\
\Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{x < - 3}\\
{3x \le 12}
\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{x < - 3}\\
{x \le 4}
\end{array}} \right.\\
\Leftrightarrow x < - 3
\end{array}\)
Vậy \(S = \left( { - \infty ; - 3} \right)\)
-- Mod Toán 10
Copyright © 2021 HOCTAP247