Giải các phương trình và bất phương trình sau:
a) \(\left| {\frac{{{x^2} - 2}}{{x + 1}}} \right| = 2\)
b) \(\left| {\frac{{3x + 4}}{{x - 2}}} \right| \le 3\)
c) \(\left| {\frac{{2x - 3}}{{x - 3}}} \right| \ge 1\)
d) \(\left| {2x + 3} \right| = \left| {4 - 3x} \right|\)
a) Điều kiện: \(x \ne - 1\)
Ta có:
\(\begin{array}{l}
\left| {\frac{{{x^2} - 2}}{{x + 1}}} \right| = 2 \Leftrightarrow \left[ \begin{array}{l}
\frac{{{x^2} - 2}}{{x + 1}} = 2\\
\frac{{{x^2} - 2}}{{x + 1}} = - 2
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
{x^2} - 2 = 2x + 2\\
{x^2} - 2 = - 2x - 2
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
{x^2} - 2x - 4 = 0\\
{x^2} + 2x = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 1 \pm \sqrt 5 \\
x = 0\\
x = - 2
\end{array} \right.
\end{array}\)
Vậy \(S = \left\{ {1 \pm \sqrt 5 ;0;2} \right\}\)
b) Điều kiện: \(x \ne 2\)
Ta có:
\(\begin{array}{l}
\left| {\frac{{3x + 4}}{{x - 2}}} \right| \le 3 \Leftrightarrow \left| {3x + 4} \right| \le 3\left| {x - 2} \right|\\
\Leftrightarrow {\left( {3x + 4} \right)^2} - 9{\left( {x - 2} \right)^2} \le 0\\
\Leftrightarrow 10\left( {6x - 2} \right) \le 0 \Leftrightarrow x \le \frac{1}{3}
\end{array}\)
Vậy \(S = \left( { - \infty ;\frac{1}{3}} \right]\)
c) Điều kiện: \(x \ne 3\)
Ta có:
\(\begin{array}{l}
\left| {\frac{{2x - 3}}{{x - 3}}} \right| \ge 1 \Leftrightarrow \left| {2x - 3} \right| \ge \left| {x - 3} \right|\\
\Leftrightarrow {\left( {2x - 3} \right)^2} - {\left( {x - 3} \right)^2} \ge 0\\
\Leftrightarrow x\left( {3x - 6} \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}
x \le 0\\
x \ge 2
\end{array} \right.
\end{array}\)
Vậy \(S = \left( { - \infty ;0} \right] \cup \left[ {2;3} \right) \cup \left[ {3; + \infty } \right)\)
d) Ta có
\(\begin{array}{l}
\left| {2x + 3} \right| = \left| {4 - 3x} \right|\\
\Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{2x + 3 = 4 - 3x}\\
{2x + 3 = 3x - 4}
\end{array}} \right.\\
\Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{x = \frac{1}{5}}\\
{x = 7}
\end{array}} \right.
\end{array}\)
Vậy \(S = \left\{ {\frac{1}{5};7} \right\}\)
-- Mod Toán 10
Copyright © 2021 HOCTAP247