Chứng minh rằng các hàm số F(x) và G(x) sau đều là một nguyên hàm của cùng một hàm số:
a) \(F\left( x \right) = \frac{{{x^2} + 6x + 1}}{{2x - 3}}\) và \(G\left( x \right) = \frac{{{x^2} + 10}}{{2x - 3}}\)
b) \(F\left( x \right) = \frac{1}{{{{\sin }^2}x}}\) và \(G\left( x \right) = 10 + {\cot ^2}x\)
a) Vì \(F(x) = \frac{{{x^2} + 6x + 1}}{{2x - 3}} = \frac{{\left( {{x^2} + 10} \right) + \left( {6x - 9} \right)}}{{2x - 3}} = \frac{{{x^2} + 10}}{{2x - 3}} + 3 = G(x) + 3\) nên F(x) và G(x)đều là một nguyên hàm của cùng một hàm số.
Cụ thể: \(G'\left( x \right) = {\left( {\frac{{{x^2} + 10}}{{2x - 3}}} \right)^\prime } = \frac{{2x\left( {2x - 3} \right) - 2\left( {{x^2} + 10} \right)}}{{{{\left( {2x - 3} \right)}^2}}} = \frac{{2{x^2} - 6x - 20}}{{{{(2x - 3)}^2}}}\)
b) Vì \(G(x) = 10 + {\cot ^2}x = \left( {1 + {{\cot }^2}x} \right) + 9 = \frac{1}{{{{\sin }^2}x}} + 9 = F(x) + 9\), nên F(x) và G(x) đều là một nguyên hàm của cùng một hàm số.
Cụ thể: \({\left( {\frac{1}{{{{\sin }^2}x}}} \right)^\prime } = \frac{{ - \left( {{{\sin }^2}x} \right)}}{{{{\sin }^4}x}} = - \frac{{2\sin x\cos x}}{{{{\sin }^4}x}} = - \frac{{2\cos x}}{{{{\sin }^3}x}}\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247