\(\int \limits_{ - 1}^1 \left| {x - {x^3}} \right|dx\) bằng:
A. \(\frac{1}{2}\)
B. 2
C. -1
D. 0
Đáp án: A.
Vì \(\left| {x - {x^3}} \right| = \left\{ \begin{array}{l}
{x^3} - x, - 1 \le x \le 0\\
x - {x^3},0 \le x \le 2\pi
\end{array} \right.\) nên tích phân đã cho bằng:
\int\limits_{ - 1}^1 {\left| {x - {x^3}} \right|} dx = \int\limits_{ - 1}^0 {\left( {{x^3} - x} \right)dx + \int\limits_0^1 {\left( {x - {x^3}} \right)dx} } \\
= \left. {\left( {\frac{{{x^4}}}{4} - \frac{{{x^2}}}{2}} \right)} \right|_{ - 1}^0 + \left. {\left( {\frac{{{x^2}}}{2} - \frac{{{x^4}}}{4}} \right)} \right|_0^1\\
= - \frac{1}{4} + \frac{1}{2} + \frac{1}{2} - \frac{1}{4} = \frac{1}{2}
\end{array}\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247