Tính thể tích các khối tròn xoay tạo thành khi quay hình phẳng xác định bởi
a) \(y = {x^{\frac{2}{3}}},x = 0\) và tiếp tuyến với đường \(y = {x^{\frac{2}{3}}}\) tại điểm có hoành độ x = 1, quanh trục Oy;
b) \(y = \frac{1}{x} - 1,y = 0,y = 2x\), quanh trục Ox.
c) \(y = \left| {2x - {x^2}} \right|,y = 0\) và x = 3, quanh :
* Trục Ox
* Trục Oy
a) Ta có: \(y' = \frac{2}{3}{x^{ - \frac{1}{3}}}\)
Với x = 1 thì y = 1 và \(y'\left( 1 \right) = \frac{2}{3}\).
Tiếp tuyến \(y = \frac{2}{3}\left( {x - 1} \right) + 1 = \frac{2}{3}x + \frac{1}{3}\)
Có \(y = {x^{\frac{2}{3}}} \Rightarrow x = {y^{\frac{3}{2}}}\) và
\(y = \frac{2}{3}x + \frac{1}{3} \Rightarrow x = \frac{3}{2}y - \frac{1}{2}\)
Khi đó \({y^{\frac{3}{2}}} = \frac{3}{2}y - \frac{1}{2} \Rightarrow y = 1\).
Ta có: \(\frac{3}{2}y - \frac{1}{2} = 0 \Leftrightarrow y = \frac{1}{3}\)
\(\begin{array}{l}
V = \pi \int \limits_0^1 {\left( {{y^{\frac{3}{2}}}} \right)^2}dy - \pi \int \limits_{\frac{1}{3}}^1 {\left( {\frac{3}{2}y - \frac{1}{2}} \right)^2}dy\\
= \pi \int \limits_0^1 {y^3}dy - \pi \int \limits_{\frac{1}{3}}^1 {\left( {\frac{3}{2}y - \frac{1}{2}} \right)^2}dy\\
= \pi .\left. {\frac{{{y^4}}}{4}} \right|_0^1 - \pi \int\limits_{\frac{1}{3}}^1 {\left( {\frac{9}{4}{y^2} - \frac{3}{2}y + \frac{1}{4}} \right)dy} \\
= \frac{\pi }{4} - \pi .\left. {\left( {\frac{3}{4}{y^3} - \frac{3}{4}{y^3} + \frac{1}{4}y} \right)} \right|_{\frac{1}{3}}^1\\
= \frac{\pi }{4} - \frac{{2\pi }}{9} = \frac{\pi }{{36}}
\end{array}\)
b) Ta có:
\(\begin{array}{l}
\frac{1}{x} - 1 = 2x \Rightarrow x = \frac{1}{2}\\
\frac{1}{x} - 1 = 0 \Leftrightarrow x = 1\\
2x = 0 \Leftrightarrow x = 0
\end{array}\)
Do đó
\(\begin{array}{l}
V = \pi \int \limits_0^{\frac{1}{2}} {\left( {2x} \right)^2}dx + \pi \int \limits_{\frac{1}{2}}^1 {\left( {\frac{1}{x} - 1} \right)^2}dx\\
= \pi .\int \limits_0^{\frac{1}{2}} 4{x^2}dx + \pi .\int \limits_{\frac{1}{2}}^1 \left( {\frac{1}{{{x^2}}} - \frac{2}{x} + 1} \right)dx\\
= \pi .\left. {\frac{{4{x^3}}}{3}} \right|_0^{\frac{1}{2}} + \pi \left. {\left( { - \frac{1}{x} - 2\ln x + x} \right)} \right|_{\frac{1}{2}}^1\\
= \frac{\pi }{6} + \pi \left( {0 + 2 + 2\ln \frac{1}{2} - \frac{1}{2}} \right)\\
= \frac{\pi }{6} + \frac{{3\pi }}{2} - 2\pi \ln 2\\
= \frac{{5\pi }}{3} - 2\pi \ln 2
\end{array}\)
c) +) Quay quanh Ox.
Ta có: \(\left| {2x - {x^2}} \right| = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = 2.
\end{array} \right.\)
Khi đó
\(\begin{array}{l}
V = \pi \int \limits_0^3 {\left( {2x - {x^2}} \right)^2}dx\\
= \pi \int \limits_0^3 \left( {4{x^2} - 4{x^3} + {x^4}} \right)dx\\
= \pi \left. {\left( {\frac{{4{x^3}}}{3} - {x^4} + \frac{{{x^5}}}{5}} \right)} \right|_0^3\\
= \pi \left( {\frac{{4.27}}{3} - {3^4} + \frac{{{3^5}}}{5}} \right) = \frac{{18\pi }}{5}
\end{array}\)
+) Quay quanh Oy.
Ta có:
\(\begin{array}{l}
y = \left| {2x - {x^2}} \right| \Rightarrow \left[ \begin{array}{l}
y = 2x - {x^2}\\
y = - 2x + {x^2}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
{x^2} - 2x + y = 0\\
{x^2} - 2x - y = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 1 \pm \sqrt {1 - y} \\
x = 1 \pm \sqrt {1 + y}
\end{array} \right.
\end{array}\)
Ta có:
\(\begin{array}{l}
{V_y} = \pi \int \limits_0^1 \left[ {{{\left( {1 + \sqrt {1 - y} } \right)}^2} - {{\left( {1 - \sqrt {1 - y} } \right)}^2}} \right]dy\\
+ \pi \int \limits_0^3 \left[ {{3^2} - {{\left( {1 + \sqrt {1 + y} } \right)}^2}} \right]dy\\
= \pi \int \limits_0^1 \left( {1 + 2\sqrt {1 - y} + 1 - y - 1 + 2\sqrt {1 - y} - 1 + y} \right)dy\\
+ \pi \int\limits_0^3 {\left( {9 - 1 - 2\sqrt {1 + y} - 1 - y} \right)dy} \\
= \pi \int \limits_0^1 4\sqrt {1 - y} dy + \pi \int \limits_0^3 \left( {7 - y - 2\sqrt {1 + y} } \right)dy\\
= 4\pi \int \limits_0^1 \sqrt {1 - y} dy + \pi \left[ {\left. {\left( {7y - \frac{{{y^2}}}{2}} \right)} \right|_0^3 - 2\int\limits_0^3 {\sqrt {1 + y} dy} } \right]\\
= 4\pi I + \pi (\frac{{33}}{2} - 2J)
\end{array}\)
Tính \(I = \int \limits_0^1 \sqrt {1 - y} dy\) ta có:
Đặt \(\sqrt {1 - y} = t \Rightarrow 1 - y = {t^2}\)
\(\begin{array}{l}
\Rightarrow - dy = 2tdt \Rightarrow dy = - 2tdt\\
\Rightarrow I = \int \limits_1^0 t.\left( { - 2tdt} \right) = \int\limits_0^1 {2{t^2}dt} \\
= \left. {\frac{2}{3}{t^3}} \right|_0^1 = \frac{2}{3}
\end{array}\)
Tính \(J = \int \limits_0^3 \sqrt {1 + y} dy\) ta có:
Đặt \(t = \sqrt {1 + y} \Rightarrow {t^2} = 1 + y\)
\(\Rightarrow 2tdt = dy\)
\( \Rightarrow J = \int\limits_1^2 {t.2tdt} = \left. {\frac{{2{t^3}}}{3}} \right|_1^2 = \frac{{14}}{3}\)
Vậy \(V = 4\pi .\frac{2}{3} + \pi \left( {\frac{{33}}{2} - 2.\frac{{14}}{3}} \right) = \frac{{59\pi }}{6}\).
-- Mod Toán 12
Copyright © 2021 HOCTAP247