Tính các nguyên hàm sau bằng phương pháp đổi biến số:
a) \(\mathop \smallint \nolimits {x^2}\sqrt[3]{{1 + {x^3}}}dx\) với x > - 1 (đặt \(t = 1 + {x^3}\)
b) \(\mathop \smallint \nolimits x{e^{ - {x^2}}}dx\) (đặt \(t = {x^2}\))
c) \(\mathop \smallint \nolimits \frac{x}{{{{\left( {1 + {x^2}} \right)}^2}}}dx\) (đặt \(t = 1 + {x^2}\));
d) \(\mathop \smallint \nolimits \frac{1}{{\left( {1 - x} \right)\sqrt x }}dx\) (đặt \(t = \sqrt x \));
e) \(\int {\sin } \frac{1}{x}.\frac{1}{{{x^2}}}dx\) (đặt \(t = \frac{1}{x}\)
)
g) \(\mathop \smallint \nolimits \frac{{{{\left( {\ln x} \right)}^2}}}{x}dx\) (đặt \(t = \sqrt x \))
h) \(\int {\frac{{\sin x}}{{\sqrt[3]{{{{\cos }^2}x}}}}} dx\) (đặt \(t = \cos x\)
)
a) \(\mathop \smallint \nolimits {x^2}\sqrt[3]{{1 + {x^3}}}dx\) với x > - 1
Đặt \(t = 1 + {x^3} \Rightarrow dt = 3{x^2}dx\)
hay \({x^2}dx = \frac{{dt}}{3}\)
Ta có:
\(\mathop \smallint \nolimits {x^2}\sqrt[3]{{1 + {x^3}}}dx = \frac{1}{3}\mathop \smallint \nolimits \sqrt[3]{t}dt = \frac{1}{3}.\frac{3}{4}{t^{\frac{4}{3}}} + C = \frac{1}{4}{(1 + {x^3})^{\frac{4}{3}}} + C\)
b) \(\mathop \smallint \nolimits x{e^{ - {x^2}}}dx\)
Đặt \(t = {x^2} \Rightarrow dt = 2xdx\)
\(\mathop \smallint \nolimits x{e^{ - {x^2}}}dx = \mathop \smallint \nolimits {e^{ - t}}\frac{{dt}}{2} = - \frac{{{e^{ - t}}}}{2} + C = - \frac{{{e^{ - {x^2}}}}}{2} + C\)
c) \(\mathop \smallint \nolimits \frac{x}{{{{\left( {1 + {x^2}} \right)}^2}}}dx\)
Đặt \(t = 1 + {x^2} \Rightarrow dt = 2xdx\)
\(\mathop \smallint \nolimits \frac{x}{{{{\left( {1 + {x^2}} \right)}^2}}}dx = \mathop \smallint \nolimits \frac{{dt}}{{2{t^2}}} = - \frac{1}{{2t}} + C = - \frac{1}{{2(1 + {x^2})}} + C\)
d) \(\mathop \smallint \nolimits \frac{1}{{\left( {1 - x} \right)\sqrt x }}dx\)
Đặt \(t = \sqrt x \Rightarrow dt = \frac{{dx}}{{2\sqrt x }}\)
\(\mathop \smallint \nolimits \frac{1}{{\left( {1 - x} \right)\sqrt x }}dx = \mathop \smallint \nolimits \frac{{2dt}}{{1 - {t^2}}} = \mathop \smallint \nolimits \left( {\frac{1}{{1 - t}} + \frac{1}{{1 + t}}} \right)dt = - ln|1 - t| + ln|1 + t| + C\)
\( = ln\left| {\frac{{1 + t}}{{1 - t}}} \right| + C = ln\left| {\frac{{1 + \sqrt x }}{{1 - \sqrt x }}} \right| + C\)
e) \(\int {\sin } \frac{1}{x}.\frac{1}{{{x^2}}}dx\)
Đặt \(t = \frac{1}{x} \Rightarrow dt = - \frac{{dx}}{{{x^2}}}\)
\({\rm{ }}\int {\sin } \frac{1}{x}.\frac{1}{{{x^2}}}dx = - {\rm{ }}\int {\sin } t.dt = \cos t + C = \cos \frac{1}{x} + C\)
g) \(\mathop \smallint \nolimits \frac{{{{\left( {\ln x} \right)}^2}}}{x}dx\)
Đặt \(t = lnx \Rightarrow dt = \frac{{dx}}{x}\)
\(\mathop \smallint \nolimits \frac{{{{\left( {\ln x} \right)}^2}}}{x}dx = \mathop \smallint \nolimits {t^2}dt = \frac{{{t^3}}}{3} + C = \frac{{{{(lnx)}^3}}}{3} + C\)
h) \(\int {\frac{{\sin x}}{{\sqrt[3]{{{{\cos }^2}x}}}}} dx\)
Đặt \(t = \cos x \Rightarrow dt = - \sin xdx\)
\(\int {\frac{{\sin x}}{{\sqrt[3]{{{{\cos }^2}x}}}}} dx = \int {\frac{{ - dt}}{{{t^{\frac{2}{3}}}}}} = - 3{t^{\frac{1}{3}}} + C = - 3\sqrt[3]{{\cos x}} + C\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247