Sử dụng phương pháp biến đổi số, tính tích phân:
a) \(\int_{0}^{3}\frac{x^{2}}{(1+x)^{\frac{3}{2}}}dx\) (Đặt u= x+1)
b) (Đặt x = sint )
c) (Đặt u = 1+x.ex)
d) (Đặt x= asint)
Câu a:
Đặt u= x+1 ta có du = dx; x2 = (u - 1)2
Khi x = 0 thì u = 1; khi x = 3 thì u = 4. Khi đó :
\(\int_{0}^{3}\frac{x^{2}}{(1+x)^{\frac{3}{2}}}dx= \int_{1}^{4}\frac{(u-1)^{2}}{u^{\frac{3}{2}}}du =\int_{1}^{4}\frac{u^{2}-2u+1}{u^{\frac{3}{2}}}du\)
\(\int_{1}^{4}(u^{\frac{1}{2}}-2u^{\frac{1}{2}}+u^{\frac{3}{2}})du= \int_{1}^{4}u^{\frac{1}{2}}du -2\int_{1}^{4}u^{\frac{1}{2}}du+ \int_{1}^{4}u^{\frac{3}{2}}du\)
\(=\frac{2}{3}u^{\frac{3}{2}} \Bigg| ^4_1-4u^{\frac{1}{2}}\Bigg| ^4_1- 2u\Bigg| ^4_1=\frac{16}{3}-\frac{2}{3}-(8-4)-2(\frac{1}{2}-1)\)
\(=\frac{14}{3}-3=\frac{5}{3}\)
Câu b:
Đặt x = sint ta có: dx = costdt
Khi x = 0 thì t = 0; khi x = 1 thì \(t=\frac{\pi }{2}\). Do đó:
\(\int_{0}^{1}\sqrt{1-x^2}dx=\int_{0}^{\frac{\pi }{2}}\sqrt{1-sin^2 t}cos tdt\)
\(=\int_{0}^{\frac{\pi }{3}}\left | cos t \right |.cos t dt = \int_{0}^{\frac{\pi }{3}}cos^2 t dt\) (Vì \(cos t \geq 0, \forall t \in \left [ 0; \frac{\pi }{2} \right ]\))
\(\Rightarrow \int_{0}^{1}\sqrt{1-x^2}dx = \int_{0}^{\frac{\pi }{2}}cos^2t dt= \frac{1}{2} \int_{0}^{\frac{\pi }{2}} (1+cos 2t)dt\)
\(=\frac{1}{2}\int_{0}^{\frac{\pi }{2}}dt +\frac{1}{4}\int_{0}^{\frac{\pi }{2}}cos 2t dt =\frac{1}{2}t \Bigg|_0^{\frac{\pi }{2}}+\frac{1}{4}sin 2t \Bigg|_0^{\frac{\pi }{2}}\)
\(=\frac{\pi }{4}+0= \frac{\pi }{4}\)
Vậy \(\int_{0}^{1}\sqrt{1-x^2}dx=\frac{\pi }{4}.\)
Câu c:
Đặt \(u=x.e^x\) ta có: \(du=(e^x+x.e^x)dx=e^x(x+1)dx\)
Khi x = 0 thì u = 0; khi x = 1 thì u = e
Do đó: \(\int_{0}^{1}\frac{e^x(x+1)}{1+x.e^x}dx=\int_{0}^{e}\frac{du}{1+u}= ln(1+u) \Bigg|^e_0=ln(e+1)\)
Câu d:
Đặt x = a sint ta có: dx = acost dt
Khi x = 0 thì t = 0; khi \(x=\frac{a}{2}\) thì \(t=\frac{\pi }{6}\). Do đó:
\(\int_{0}^{\frac{a}{2}}\frac{1}{\sqrt{a^2-x^2}}dx= \int_{0}^{\frac{\pi }{6}}\frac{acos t dt}{\sqrt{a^2-a^2sin^2t}}\)
\(=\int_{0}^{\frac{\pi }{6}}\frac{a.cost dt}{\left | a cos t \right |}\)
Vì a > 0 và \(cos t \geq 0, \forall t \in \left [ 0; \frac{\pi }{6} \right ]\)
Nên \(\int_{0}^{\frac{\pi }{6}}\frac{a.cos t .dt}{a.cost}= \int_{0}^{\frac{\pi }{6}}dt =t \Bigg|^{\frac{\pi }{6}}_0=\frac{\pi }{6}\)
Vậy \(\int_{0}^{\frac{a}{2}}\frac{1}{\sqrt{a^2-x^2}}dx=\frac{\pi }{6}.\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247