Tính tích phân \(\int_{0}^{1}x(1-x)^{5}dx\) bằng hai phương pháp:
a) Đổi biến số u = 1 - x;
b) Tính tích phân từng phần.
Đặt \(J=\int_{0}^{1}x(1-x)^{5}dx\)
Câu a:
Đặt u = 1 - x ta có: du = - dx đổi cận:
Ta có: x = 1 - u, nên:
\(J=\int_{1}^{0}(u-1)u^5 du=\int_{1}^{0}u^6 du- \int_{1}^{0}u^5 du\)
\(=\frac{u^7}{7} \Bigg|^0_1-\frac{u^6}{6} \Bigg|^0_1=\frac{1}{42}\)
Câu b:
Đặt \(\left\{ \begin{array}{l}u = x\\dv = {(1 - x)^5}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = - \frac{1}{6}(1 - {x^6})\end{array} \right.\)
Khi đó: \(J=-\frac{1}{6} \left [ x(x-1)^6 \Bigg|^1_0- \int_{0}^{1} (x-1)^6 dx \right ]\)
\(=-\frac{1}{6}\left [ -\int_{0}^{1}(x-1)^6d(x-1) \right ]= \frac{1}{42}(x-1)^7 \Bigg|^1_0=\frac{1}{42}\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247