Tìm nguyên hàm của các hàm số sau:
a) \(f\left( x \right) = {\left( {x - 9} \right)^4}\)
b) \(f\left( x \right) = \frac{1}{{{{\left( {2 - x} \right)}^2}}}\)
c) \(f\left( x \right) = \frac{x}{{\sqrt {1 - {x^2}} }}\)
d) \(f\left( x \right) = \frac{1}{{\sqrt {2x + 1} }}\)
a)
\(f\left( x \right) = {\left( {x - 9} \right)^4}\)\(\mathop \smallint \nolimits {(x - 9)^4}dx = \frac{1}{5}{(x - 9)^5} + C\)
b)
\(f\left( x \right) = \frac{1}{{{{\left( {2 - x} \right)}^2}}}\)Đặt
. Ta có\(\mathop \smallint \nolimits \frac{1}{{{{\left( {2 - x} \right)}^2}}}dx = - \mathop \smallint \nolimits \frac{{du}}{{{u^2}}} = \frac{1}{u} + C = \frac{1}{{2 - x}} + C\)
c)
\(f\left( x \right) = \frac{x}{{\sqrt {1 - {x^2}} }}\)Đặt \(\sqrt {1 - {x^2}} = u \Leftrightarrow 1 - {x^2} = {u^2}\)
\( \Rightarrow - 2xdx = 2udu \Leftrightarrow xdx = - udu\)
\(\mathop \smallint \nolimits \frac{x}{{\sqrt {1 - {x^2}} }}dx = - \mathop \smallint \nolimits \frac{{udu}}{u} = - \mathop \smallint \nolimits^ du = - u + C = - \sqrt {1 - {x^2}} + C\)
d)
\(f\left( x \right) = \frac{1}{{\sqrt {2x + 1} }}\)Đặt \(\sqrt {2x + 1} = u \Leftrightarrow 2x + 1 = {u^2}\)
\( \Rightarrow 2dx = 2udu \Leftrightarrow dx = udu\)
\(\mathop \smallint \nolimits \frac{1}{{\sqrt {2x + 1} }}dx = \mathop \smallint \nolimits \frac{{udu}}{u} = \mathop \smallint \nolimits du = u + C = \sqrt {2x + 1} + C\)
-- Mod Toán 12
Copyright © 2021 HOCTAP247