Cho hàm số \(y = \sin 2x\). Tìm \(\frac{{{\rm{\Delta }}y}}{{{\rm{\Delta }}x}}\) tại \(x = \frac{\pi }{4}\)
A. \(\frac{{ - 2{{\sin }^2}{\rm{\Delta }}x}}{{{\rm{\Delta }}x}}\)
B. \(\frac{{{{\sin }^{}}{\rm{\Delta }}x}}{{{\rm{\Delta }}x}}\)
C. \(\frac{{2{{\sin }^2}{\rm{\Delta }}x}}{{{\rm{\Delta }}x}}\)
D. \(\frac{{3{{\sin }^2}{\rm{\Delta }}x}}{{{\rm{\Delta }}x}}\)
Ta có:
\(\begin{array}{l}
{\rm{\Delta }}y = \sin 2\left( {x + {\rm{\Delta }}x} \right) - \sin 2x\\
= \sin \left( {2x + 2{\rm{\Delta }}x} \right) - \sin 2x\\
= 2\cos \left( {2x + {\rm{\Delta }}x} \right)\sin {\rm{\Delta }}x
\end{array}\)
Suy ra \(\frac{{{\rm{\Delta }}y}}{{{\rm{\Delta }}x}} = \frac{{2\cos \left( {2x + {\rm{\Delta }}x} \right)\sin {\rm{\Delta }}x}}{{{\rm{\Delta }}x}}\)
Vậy \(\frac{{{\rm{\Delta }}y}}{{{\rm{\Delta }}x}}\) tại \(x = \frac{\pi }{4}\) là \(\frac{{2\cos \left( {{\rm{\Delta }}x + \frac{\pi }{2}} \right)\sin {\rm{\Delta }}x}}{{{\rm{\Delta }}x}} = - \frac{{2\cos \left( {\frac{\pi }{2} - {\rm{\Delta }}x} \right)\sin {\rm{\Delta }}x}}{{{\rm{\Delta }}x}} = \frac{{ - 2{{\sin }^2}{\rm{\Delta }}x}}{{{\rm{\Delta }}x}}\)
Chọn A.
-- Mod Toán 11
Copyright © 2021 HOCTAP247