Cho hàm số \(y = \frac{{2x - 3}}{{x + 4}}\). Tính y'
A. \(y' = \frac{{1 - 2{x^2}}}{{\sqrt {1 + {x^2}} }}\)
B. \(y' = \frac{{1 + 2{x^2}}}{{\sqrt {1 - {x^2}} }}\)
C. \(y' = \frac{{1 + 2{x^2}}}{{1 + {x^2}}}\)
D. \(y' = \frac{{1 + 2{x^2}}}{{\sqrt {1 + {x^2}} }}\)
Ta có:
\(y' = {\left( {x\sqrt {1 + {x^2}} } \right)^\prime } = \sqrt {1 + {x^2}} + x.\frac{x}{{\sqrt {1 + {x^2}} }} = \frac{{1 + 2{x^2}}}{{\sqrt {1 + {x^2}} }}\)
Chọn D.
-- Mod Toán 11
Copyright © 2021 HOCTAP247