Tìm đạo hàm cấp hai của các hàm số sau:
a) \(y=\frac{1}{1-x}\)
b) \(y=\frac{1}{\sqrt{1-x}}\)
c) \(y= tanx.\)
d) \(y= cos^2x.\)
Câu a:
Ta có: \(y'=\left (\frac{1}{1-x} \right )'=\frac{-(1-x)'}{(1-x)^2}=\frac{1}{(1-x)^2}.\)
\(y''=(y')'=\left ( \frac{1}{(1-x)^2} \right )'= \frac{-((1-x)^2)'}{(1-x)^4}\)
\(=\frac{-2.(1-x).(1-x)'}{(1-x)^4}=\frac{2}{(1-x)^3}.\)
Câu b:
\(y=\frac{1}{\sqrt{1-x}}\Rightarrow y'=\left ( \frac{1}{\sqrt{1-x}} \right )'= \frac{-(\sqrt{1-x})'}{1-x}\)
\(=\frac{-(1-x)'}{2\sqrt{1-x}.(1-x)}=\frac{1}{2\sqrt{(1-x)^3}}.\)
\(y''=\left ( \frac{1}{2\sqrt{(1-x)^3}} \right )'= \frac{-(2\sqrt{(1-x)}^3)'}{4(1-x)^3}\)
\(=\frac{-2((1-x)^3)'}{2\sqrt{(1-x)^3}.(1-x)^3}= \frac{6.(1-x)^2}{8.\sqrt{(1-x)^8}.(1-3)^3}\)
\(=\frac{3}{4}.\frac{1}{\sqrt{(1-x)^5}}.\)
Câu c:
Ta có: \(y=tanx\Rightarrow y'=(tanx)'=\frac{1}{cos^2x}\)
\(\Rightarrow y''=\left ( \frac{1}{cos^2x} \right )'=\frac{-(cos^2x)'}{cos^4x}= \frac{-2.cosx.(cosx)'}{cos^4x}=\frac{2sinx}{cos^3x}\)
Câu d:
Ta có \(y=cos^2x\)
\(\Rightarrow y'=(cos^2x)'=-2sinx.cosx=-sin2x.\)
\(y''=(-sin2x)'=-(2x)'.cos2x=-2cos2x.\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247