Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Chương 5: Đạo Hàm Bài tập 1 trang 176 SGK Đại số & Giải tích 11

Bài tập 1 trang 176 SGK Đại số & Giải tích 11

Lý thuyết Bài tập
Câu hỏi:

Bài tập 1 trang 176 SGK Đại số & Giải tích 11

Tìm đạo hàm của các hàm số sau:

a) \(y=\frac{x^3}{3}-\frac{x^2}{2}+x-5\)

b) \(y=\frac{2}{x}-\frac{4}{x^2}+\frac{5}{x^3}-\frac{6}{7x^4}\)

c) \(y=\frac{3x^2-6x+7}{4x}\)

d) \(y=\left ( \frac{2}{x}+3x \right )(\sqrt{x}-1)\)

e) \(y=\frac{1+\sqrt{x}}{1-\sqrt{x}}\)

f) \(y=\frac{-x^2+7x+5}{x^2-3x}.\)

Áp dụng các quy tắc, công thức tính đạo hàm ta có lời giải chi tiết câu a, b, c, d, e, f bài 1 như sau:

Câu a:

Ta có: \(y'=\left ( \frac{x^3}{3} -\frac{x^2}{2}+x-5\right )'=x^2-x+1.\)

Câu b:

Ta có: \(y'=\left ( \frac{2}{x}-\frac{4}{x^2} +\frac{5}{x^3}-\frac{6}{7x^4}\right )'\)

\(=\left (\frac{2}{x} \right )'-\left (\frac{4}{x^2} \right ) ' +\left (\frac{5}{x^3} \right )'-\left ( \frac{6}{7x^4}\right )'\)

\(=-\frac{2}{x^2}+\frac{8}{x^3}-\frac{15}{x^4}+\frac{24}{7x^5}.\)

Câu c:

Ta có: \(y'=\left ( \frac{3x^2-6x+7}{4x} \right )'\)

\(= \frac{(3x^2-6x+7).4x-(4x)'(3x^2-6x+7)}{(4x)^2}\)

\(=\frac{3x^2-7}{4x^2}.\)

Câu d:

Ta có: \(y'=\left [ \left ( \frac{2}{x} +3x\right ) (\sqrt{x}-1)\right ]'\)

\(=\left ( \frac{2}{x}+3x \right )'.(\sqrt{x}-1)+ \left ( \frac{2}{x}+3x \right ).(\sqrt{x}-1)'\)

\(=\left ( \frac{-2}{x^2}+3x \right ).(\sqrt{x}-1)+ \left ( \frac{2}{x}+3x \right ).\frac{1}{2\sqrt{x}}\)

\(=\frac{9x^2\sqrt{x}-6x^2-2\sqrt{x}+4}{2x^2}.\)

Câu e:

Ta có: \(y'=\left ( \frac{1+\sqrt{x}}{1-\sqrt{x}} \right )'\)

\(= \frac{(1+\sqrt{x})'.(1-\sqrt{x})-(1+\sqrt{x}).(1-\sqrt{x})'}{(1-\sqrt{x})^2}\)

\(=\frac{\frac{1-\sqrt{x}}{2\sqrt{x}}+\frac{1+\sqrt{x}}{2\sqrt{x}}}{(1-\sqrt{x})^2} =\frac{1}{\sqrt{x}(1-\sqrt{x})^2}.\)

Câu f:

\(y'=\left ( \frac{-x^2+7x+5}{x^2-3x} \right )'\)

\(=\frac{(-x^2+7x+5)'(x^2-3x)-(-x^2+7x+5)(x^2-3x)'}{(x^2-3x)^2}\)

\(=\frac{(-2x+7)(x^2-3x)-(-x^2+7x+5)(2x-3)}{(x^2-3x)^2}\)

\(=\frac{-4x^2-10x+15}{(x^2-3x)^2}.\)

 

-- Mod Toán 11

Copyright © 2021 HOCTAP247