Giải các phương trình:
a) \(f'(x)=g(x)\) với \(f(x)=sin^32x\) và \(g(x)=4cos2x -5sin4x;\)
b) \(f'(x)=0\) với \(f(x)=20cos3x+12cos5x-15cos4x\)
Câu a:
Ta có: \(f'(x)=3sin^22x.(sin2x)'=3sin^22x.2cos2x=6sin^22x cos2x.\)
Vì vậy \(f'(x)=g(x)\Leftrightarrow 6sin^22xcos2x=4cos2x-5sin4x\)
\(\Leftrightarrow 6sin^22xcos2x-4cos2x+10sin2xcos2x=0\)
\(\Leftrightarrow cos2x(3sin^22x+5sin2x-4)=0\)
\(\Leftrightarrow\bigg \lbrack \begin{matrix} cos2x=0\\ 3sin^22x+5sin2x-4=0 \end{matrix}\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
{2x = \frac{\pi }{2} + k\pi }\\
{sin2x = \frac{{\sqrt {73} - 5}}{6}}
\end{array}} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{4} + \frac{{k\pi }}{2}\\
x = \arcsin \left( {\frac{{\sqrt {73} - 5}}{6}} \right) + k\pi \\
x = \frac{\pi }{2} - \arcsin \left( {\frac{{\sqrt {73} - 5}}{6}} \right) + k\pi
\end{array} \right.;k \in Z\)
Câu b:
\(f'(x)=-20.3sin3x-12.5sin5x+15.4sin4x\)
\(= 60(sin4x-sin3x-sin5x)\)
Vì vậy: \(f'(x)=0\)
\(\Leftrightarrow sin4x-(sin3x+sin5x)=0\)
\(\Leftrightarrow sin4x-2sin\frac{8x}{2}cos\frac{2x}{2}=0\)
\(\Leftrightarrow sin4x-(1-2cosx)=0\Leftrightarrow \bigg \lbrack\begin{matrix} sin4x=0\\ cosx=\frac{1}{2} \end{matrix}\)
\(\Leftrightarrow \bigg \lbrack\begin{matrix} 4x=k \pi\\ x=\pm \frac{\pi}{3}+l 2 \pi \end{matrix}\Leftrightarrow \bigg \lbrack\begin{matrix} x=\frac{k \pi}{4}\\ x=\pm \frac{\pi}{3}+l 2 \pi \end{matrix}\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247