Một vật rơi tự do theo phương trình \(s=\frac{1}{2}gt^2,\) trong đó g ≈ 9,8 m/s2 là gia tốc trọng trường.
a) Tìm vận tốc trung bình của chuyển động trong khoảng thời gian từ t (t=5s) đến t + ∆t, biết rằng ∆t = 0,1s; ∆t = 0,05s; ∆t = 0,001s.
b) Tìm vận tốc tức thời của chuyển động tại thời điểm t = 5s.
Câu a:
Khi \(\Delta t =0,1s\), vận tốc trung bình của chuyển độnh là:
\(v_{tb}= \frac{\frac{1}{2}g(5,1^2-5^2)}{0,1}=\frac{\frac{1}{2}.9,8.0,1 10,1}{0,1}=49,49m/s\)
Khi \(\Delta t = 0,05s\), vận tốc trung bình của chuyển động là:
\(v_{tb}= \frac{\frac{1}{2}g(5,05^2-5^2)}{0,05}=49,245 m/s.\)
Khi \(\Delta t = 0,001s\), vận tốc trung bình của chuyển động là:
\(v_{th}=\frac{\frac{1}{2}g(5,001^2-5^2)}{0,001^2}=49,005m/s\)
Câu b:
Ta có: \(v_{tb}=s'(t_0)=\left ( \frac{1}{2}.g.t^2 \right )'_{t_0}=gt_0\)
Với \(t_0=5s\Rightarrow v_{t_0}=9,8.5=49 m/s\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247