Cho hàm số \(f(x) = x - 2\sqrt {{x^2} + 12} \). Giải bất phương trình \(f'(x) \le 0\)
\(\begin{array}{l}
f\prime \left( x \right) = 1 - 2.\frac{{2x}}{{2\sqrt {{x^2} + 12} }} = 1 - \frac{{2x}}{{\sqrt {{x^2} + 12} }}\\
\Rightarrow f\prime \left( x \right) \le 0 \Leftrightarrow 1 - \frac{{2x}}{{\sqrt {{x^2} + 12} }} \le 0\\
\Leftrightarrow \frac{{\sqrt {{x^2} + 12} - 2x}}{{\sqrt {{x^2} + 12} }} \le 0\\
\Rightarrow \sqrt {{x^2} + 12} - 2x \le 0\\
\Leftrightarrow \sqrt {{x^2} + 12} \le 2x\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ge 0\\
{x^2} + 12 \le 4{x^2}
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ge 0\\
{x^2} \ge 4
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ge 0\\
\left[ \begin{array}{l}
x \le - 2\\
x \ge 2
\end{array} \right.
\end{array} \right. \Leftrightarrow x \ge 2
\end{array}\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247