Tìm đạo hàm của các hàm số sau:
a) \(y = \frac{x-1}{5x-2}\);
b) \(y =\frac{2x+3}{7-3x}\);
c) \(y =\frac{x^{2}+2x+3}{3-4x}\);
d) \(y =\frac{x^{2}+7x+3}{x^{2}-3x}\).
Áp dụng công thức: \(\left ( \frac{u}{v} \right )'=\frac{u'v-uv'}{v^2},(v(x) \ne 0)\).
Câu a:
\(\begin{array}{l}
y' = \frac{{\left( {x - 1} \right)'.\left( {5x - 2} \right) - \left( {x - 1} \right).\left( {5x - 2} \right)'}}{{{{\left( {5x - 2} \right)}^2}}}\\
= \frac{{5x - 2 - \left( {x - 1} \right).5}}{{{{\left( {5x - 2} \right)}^2}}} = \frac{3}{{{{\left( {5x - 2} \right)}^2}}}
\end{array}\)
Câu b:
\(\begin{array}{l}
y' = \frac{{\left( {2x + 3} \right)'.\left( {7 - 3x} \right) - \left( {2x + 3} \right).\left( {7 - 3x} \right)'}}{{{{\left( {7 - 3x} \right)}^2}}}\\
= \frac{{2\left( {7 - 3x} \right) - \left( {2x + 3} \right).\left( { - 3} \right)}}{{{{\left( {7 - 3x} \right)}^2}}} = \frac{{23}}{{{{\left( {7 - 3x} \right)}^2}}}
\end{array}\)
Câu c:
\(\begin{array}{l}
y' = \frac{{\left( {{x^2} + 2x + 3} \right)'.\left( {3 - 4x} \right) - \left( {{x^2} + 2x + 3} \right).\left( {3 - 4x} \right)'}}{{{{\left( {3 - 4x} \right)}^2}}}\\
= \frac{{\left( {2x + 2} \right).\left( {3 - 4x} \right) - \left( {{x^2} + 2x + 3} \right).\left( { - 4} \right)}}{{{{\left( {3 - 4x} \right)}^2}}} = \frac{{ - 2\left( {2{x^2} - 3x - 9} \right)}}{{{{\left( {3 - 4x} \right)}^2}}}
\end{array}\)
Câu d:
\(\begin{array}{l}
y' = \frac{{\left( {{x^2} + 7x + 3} \right)'.\left( {{x^2} - 3x} \right) - \left( {{x^2} + 7x + 3} \right).\left( {{x^2} - 3x} \right)'}}{{{{\left( {{x^2} - 3x} \right)}^2}}}\\
= \frac{{\left( {2x - 7} \right).\left( {{x^2} - 3x} \right) - \left( {{x^2} + 7x + 3} \right).\left( {2x - 3} \right)}}{{{{\left( {{x^2} - 3x} \right)}^2}}} = \frac{{ - 10{x^2} - 6x + 9}}{{{{\left( {{x^2} - 3x} \right)}^2}}}
\end{array}\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247