Cho hai hàm số \(y=\frac{1}{x\sqrt{2}}\) và \(y=\frac{x^2}{\sqrt{2}}\)
Viết phương trình tiếp tuyến với đồ thị của mỗi hàm số đã cho tại giao điểm của chúng. Tính góc giữa hai tiếp tuyến kể trên.
Bước 1: Tính \(f'({x_0})\).
Bước 2: Hệ số góc của tiếp tuyến với đồ thị (C) tại \(M_0\) là \(k=f'(x_0)\)
Bước 3: Phương trình tiếp tuyến với đồ thị (C) tại điểm \(M_0(x_0;y_0) \in (C)\) là: \(y = f'({x_0}).(x - {x_0}) + {y_0}\)
Toạ độ giao điểm của hai hàm số \(y=\frac{1}{x\sqrt{2}}\) và \(y=\frac{x^2}{\sqrt{2}}\) là nghiệm của hệ:
\(\left\{\begin{matrix} y=\frac{1}{x\sqrt{2}} \\ \\ y=\frac{x^2}{\sqrt{2}} \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=\frac{1}{\sqrt{2}}. \end{matrix}\right.\)
Ta có với \(y=\frac{1}{x\sqrt{2}}\Rightarrow y'=-\frac{1}{\sqrt{2}x^2}\)
\(\Rightarrow y'(1)=-\frac{1}{\sqrt{2}}\)
⇒ phương trình tiếp tuyến của đồ thị hàm số \(y=\frac{1}{x\sqrt{2}}\) tại điểm \((1;\frac{1}{\sqrt{2}})\) là \(y-\frac{1}{\sqrt{2}}=-\frac{1}{\sqrt{2}}(x-1)\)
\(\Leftrightarrow y=-\frac{1}{\sqrt{2}}x+\sqrt{2}.\)
Với \(y=\frac{x^2}{\sqrt{2}}\Rightarrow y'=\sqrt{2}x\)
\(\Rightarrow y'(1)=\sqrt{2}\)
⇒ phương trình tiếp tuyến của đồ thị hàm số \(y=\frac{x^2}{\sqrt{2}}\) tại điểm \((1;\frac{1}{\sqrt{2}})\) là: \(y-\frac{1}{\sqrt{2}}=\sqrt{2}(x-1)\)
\(\Leftrightarrow y=\sqrt{2}x-\frac{1}{\sqrt{2}}\)
Do \(\left ( -\frac{1}{\sqrt{2}} \right ).(\sqrt{2})=-1\)
⇒ góc giữa hai tiếp tuyến \(y=-\frac{1}{\sqrt{2}}x+\sqrt{2}\) và \(y=\sqrt{2}x-\frac{1}{\sqrt{2}}\) là 900.
-- Mod Toán 11
Copyright © 2021 HOCTAP247