Cho hàm số \(y = \cot \sqrt {1 + {x^2}} \). Tính
Ta có:
y' = {\left( {\cot \sqrt {1 + {x^2}} } \right)^\prime } = {\left( {\sqrt {1 + {x^2}} } \right)^\prime }.\left( { - \frac{1}{{{{\sin }^2}\sqrt {1 + {x^2}} }}} \right)\\
= \frac{{2x}}{{2\sqrt {1 + {x^2}} }}.\left( { - \frac{1}{{{{\sin }^2}\sqrt {1 + {x^2}} }}} \right) = \frac{{ - x}}{{\sqrt {1 + {x^2}} .{{\sin }^2}\sqrt {1 + {x^2}} }}
\end{array}\)
Vậy
\(y'\left( 1 \right) = \frac{{ - 1}}{{\sqrt {1 + 1} .{{\sin }^2}\sqrt {1 + 1} }} = - \frac{1}{{\sqrt 2 {{\sin }^2}\sqrt 2 }}\)
Chọn B
-- Mod Toán 11
Copyright © 2021 HOCTAP247