Tính đạo hàm của hàm số: \(y = \left( {{x^2} + 1} \right)\left( {{x^3} + 1} \right)2{\left( {{x^4} + 1} \right)^3}\)
\(\begin{array}{l}
y\prime = \left( {{x^2} + 1} \right)\prime \left[ {{{\left( {{x^3} + 1} \right)}^2}{{\left( {{x^4} + 1} \right)}^3}} \right] + \left( {{x^2} + 1} \right)\left[ {{{\left( {{x^3} + 1} \right)}^2}{{\left( {{x^4} + 1} \right)}^3}} \right]\prime \\
= 2x\left[ {{{\left( {{x^3} + 1} \right)}^2}{{\left( {{x^4} + 1} \right)}^3}} \right] + \left( {{x^2} + 1} \right)\left[ {{{\left( {{x^3} + 1} \right)}^2}{{\left( {{x^4} + 1} \right)}^3}} \right]\prime
\end{array}\)
Ta có:
Suy ra
\(y' = 2x{\left( {{x^3} + 1} \right)^2}{\left( {{x^4} + 1} \right)^3} + \left( {{x^2} + 1} \right)\left[ {6{x^2}\left( {{x^3} + 1} \right){{\left( {{x^4} + 1} \right)}^3} + 12{x^3}{{\left( {{x^3} + 1} \right)}^2}{{\left( {{x^4} + 1} \right)}^3}} \right]\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247