Giải phương trình y’ = 0 trong mỗi trường hợp sau :
a. y = sin2x - 2cosx
b. y = 3sin2x + 4cos2x + 10x
c. y=cos2x + sinx
d. y = tanx + cotx
a) Với mọi x ∈ R, ta có:
\(\begin{array}{*{20}{l}}
\begin{array}{l}
y' = 2\cos 2x + 2\sin x\\
= 2\left( {1 - 2{{\sin }^2}x} \right) + 2\sin x
\end{array}\\
{ = - 4{{\sin }^2}x + 2\sin x + 2}
\end{array}\)
Vậy \(y\prime = 0 \Leftrightarrow 2si{n^2}x - sinx - 1 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}
sinx = 1\\
sinx = - \frac{1}{2}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{2} + k2\pi \\
x = - \frac{\pi }{6} + k2\pi \\
x = \frac{{7\pi }}{6} + k2\pi (k \in Z)
\end{array} \right.\)
b) Với mọi x ∈ R, ta có: y′ = 6cos2x − 8sin2x + 10
Vậy y′ = 0 ⇔ 4sin2x−3cos2x = 5
\( \Leftrightarrow \frac{4}{5}sin2x - \frac{3}{5}cos2x = 1(1)\)
Vì \({\left( {\frac{4}{5}} \right)^2} + {\left( {\frac{3}{5}} \right)^2} = 1\) n
Nên có số α sao cho cosα = 4/5 và sinα = 3/5
Thay vào (1), ta được :
\(\begin{array}{*{20}{l}}
{\sin 2x\cos \alpha - \sin \alpha \cos 2x = 1}\\
{ \Leftrightarrow \sin (2x - \alpha ) = 1}\\
{ \Leftrightarrow 2x - \alpha = \frac{\pi }{2} + k2\pi }\\
{ \Leftrightarrow x = \frac{1}{2}\left( {\alpha + \frac{\pi }{2} + k2\pi } \right)(k \in Z)}
\end{array}\)
c) Với mọi x ∈ R, ta có: y′ = −2cosxsinx + cosx = cosx(1 − 2sinx)
\(\begin{array}{*{20}{l}}
\begin{array}{l}
y\prime = 0 \Leftrightarrow \cos x(1 - 2\sin x) = 0\\
\Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{\cos x = 0}\\
{1 - 2\sin x = 0}
\end{array}} \right.
\end{array}\\
{ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{x = \frac{\pi }{2} + k\pi }\\
{\sin x = \frac{1}{2} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{x = \frac{\pi }{6} + k2\pi }\\
{x = \frac{{5\pi }}{6} + k2\pi }
\end{array}} \right.}
\end{array}} \right.}
\end{array}\)
Vậy \(x = \frac{\pi }{2} + k\pi ;\)
\(x = \frac{\pi }{6} + k2\pi ;x = \frac{{5\pi }}{6} + k2\pi (k \in Z)\)
d)
\(\begin{array}{*{20}{l}}
{y\prime = \frac{1}{{{{\cos }^2}x}} - \frac{1}{{{{\sin }^2}x}}\forall x \ne k\frac{\pi }{2}}\\
{y\prime = 0 \Leftrightarrow \frac{1}{{{{\cos }^2}x}} = \frac{1}{{{{\sin }^2}x}} \Leftrightarrow {{\tan }^2}x = 1}\\
{ \Leftrightarrow \tan x = \pm 1 \Leftrightarrow x = \pm \frac{\pi }{4} + k\pi ,k \in Z}
\end{array}\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247