Áp dụng công thức (2), tìm giá trị gần đúng của các số sau (làm tròn kết quả đến hàng phần nghìn).
\(\begin{array}{*{20}{l}}
{a)\frac{1}{{0,9995}}}\\
{b)\sqrt {0,996} }\\
{c)\cos {{45}^0}30\prime }
\end{array}\)
a) Xét hàm số \(f(x) = \frac{1}{x}\) , ta có \(f'(x) = \frac{{ - 1}}{{{x^2}}}\)
Đặt x0 = 1, Δx = −0,0005 và áp dụng công thức gần đúng
\(f({x_0} + \Delta x) \approx f({x_0}) + f\prime ({x_0})\Delta x\)
Ta được:
\(\begin{array}{l}
1{x_0} + \Delta x \approx \frac{1}{{{x_0}}} - \frac{1}{{x_0^2}}.\Delta x,\\
Hay\,\,\frac{1}{{0,9995}} \approx 1 + 0,0005 = 1,0005
\end{array}\)
b) Xét \({f(x) = \sqrt x }\) ta có:
\(\begin{array}{*{20}{l}}
{f\prime (x) = \frac{1}{{2\sqrt x }}}\\
{{x_0} = 1,\Delta x = - 0,004}\\
{f({x_0} + \Delta x) \approx f({x_0}) + f\prime ({x_0})\Delta x}\\
{ \Leftrightarrow \sqrt {0,996} \approx 1 - \frac{1}{2}.0,004 = 0,998}
\end{array}\)
c) Xét hàm số f(x) = cosx ta có: f′(x) = −sinx
Đặt \({x_0} = \frac{\pi }{4},\Delta x = \frac{\pi }{{360}}\)
\(cos\left( {\frac{\pi }{4} + \frac{\pi }{{360}}} \right) \approx cos\frac{\pi }{4} - sin\left( {\frac{\pi }{4}} \right).\frac{\pi }{{360}}\)
Vậy \(cos{45^0}30\prime \approx \frac{{\sqrt 2 }}{2} - \frac{{\sqrt 2 }}{2}.\frac{\pi }{{360}} \approx 0,7009\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247