Tìm đạo hàm của các hàm số sau :
a. \(y = \frac{{a{x^3} + b{x^2} + c}}{{\left( {a + b} \right)x}}\) (a, b, c là các hằng số)
b. \(y = {\left( {{x^3} - \frac{1}{{{x^3}}} + 3} \right)^4}\)
c. \(y = {x^3}{\cos ^2}x\)
d. \(y = \sin \sqrt {4 + {x^2}} \)
e. \(y = \sqrt {1 + \tan \left( {x + \frac{1}{x}} \right)} \)
a.
\(\begin{array}{l}
y' = \left[ {\frac{a}{{a + b}}{x^2} + \frac{b}{{a + b}}x + \frac{c}{{\left( {a + b} \right)x}}} \right]\\
= \frac{{2a}}{{a + b}}x + \frac{b}{{a + b}} - \frac{c}{{\left( {a + b} \right){x^2}}}\\
= \frac{{2a{x^3} + b{x^2} - c}}{{\left( {a + b} \right){x^2}}}
\end{array}\)
b.
\(\begin{array}{l}
y' = 4{\left( {{x^3} - \frac{1}{{{x^3}}} + 3} \right)^3}\left( {3{x^2} + \frac{3}{{{x^4}}}} \right)\\
= 12\left( {{x^3} - \frac{1}{{{x^3}}} + 3} \right)\left( {{x^2} + \frac{1}{{{x^4}}}} \right)
\end{array}\)
c.
\(\begin{array}{l}
y' = 3{x^2}{\cos ^2}x - {x^3}\sin 2x\\
= {x^2}\left( {3{{\cos }^2}x - x\sin 2x} \right)
\end{array}\)
d.
\(y' = \frac{x}{{\sqrt {4 + {x^2}} }}\cos \sqrt {4 + {x^2}} \)
e.
\(\begin{array}{l}
y' = \frac{{1 - \frac{1}{{{x^2}}}}}{{2{{\cos }^2}\left( {x + \frac{1}{x}} \right)\sqrt {1 + \tan \left( {x + \frac{1}{x}} \right)} }}\\
= \frac{{{x^2} - 1}}{{2{x^2}{{\cos }^2}\left( {x + \frac{1}{x}} \right)\sqrt {1 + \tan \left( {x + \frac{1}{x}} \right)} }}
\end{array}\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247