Tính f′(π) nếu \(f(x) = \frac{{\sin x - x\cos x}}{{\cos x - x\sin x}}\)
Với mọi x sao cho cosx − xsinx ≠ 0, ta có:
\(f\prime (x) = \frac{{[\cos x - (\cos x - x\sin x)](\cos x - x\sin x) - (\sin x - x\cos x)[ - \sin x - (\sin x + x\cos x)]}}{{{{(\cos x - x\sin x)}^2}}}\)
Vì sinπ = 0, cosπ = −1 nên:
\(f\prime (\pi ) = \frac{{[ - 1 - ( - 1)].( - 1) - \pi .\pi }}{{{{( - 1)}^2}}} = - {\pi ^2}\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247