Giải các bất phương trình
a) \(f'(x) > 0\) với \(f(x) = \frac{1}{7}{x^7} - \frac{9}{4}{x^4} + 8x - 3\)
b) \(g'(x) \le 0\) với \(g(x) = \frac{{{x^2} - 5x + 4}}{{x - 2}}\)
a) Ta có:
f\prime \left( x \right) = {x^6} - 9{x^3} + 8\\
\Rightarrow f\prime \left( x \right) > 0 \Leftrightarrow {x^6} - 9{x^3} + 8 > 0\\
\Leftrightarrow \left( {{x^3} - 1} \right)\left( {{x^3} - 8} \right) > 0\\
\Leftrightarrow \left[ \begin{array}{l}
{x^3} < 1\\
{x^3} > 8
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x < 1\\
x > 2
\end{array} \right.
\end{array}\)
b) Ta có:
\({g'\left( x \right) = \frac{{\left( {2x - 5} \right)\left( {x - 2} \right) - \left( {{x^2} - 5x + 4} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x + 6}}{{{{\left( {x - 2} \right)}^2}}}}\)
Suy ra
\({g'\left( x \right) \le 0 \Leftrightarrow \frac{{{x^2} - 4x + 6}}{{{{\left( {x - 2} \right)}^2}}} \le 0 \Rightarrow {x^2} - 4x + 6 \le 0 \Leftrightarrow {{\left( {x - 2} \right)}^2} + 2 \le 0\left( {vn} \right)}\)
-- Mod Toán 11
Copyright © 2021 HOCTAP247