Cho \(f\left( x \right) = \sqrt {1 - 2\tan x} \) Tính \(f'\left( {\frac{\pi }{4}} \right)\)
Ta có:
\(\begin{array}{l}
f'\left( x \right) = {\left( {\sqrt {1 + 2\tan x} } \right)^\prime } = \frac{{{{\left( {1 + 2\tan x} \right)}^\prime }}}{{2\sqrt {1 + 2\tan x} }}\\
= \frac{{\frac{2}{{{{\cos }^2}x}}}}{{2\sqrt {1 + 2\tan x} }} = \frac{1}{{{{\cos }^2}x\sqrt {1 + 2\tan x} }}
\end{array}\)
Do đó:
\(f'\left( {\frac{\pi }{4}} \right) = \frac{1}{{{{\cos }^2}\frac{\pi }{4}.\sqrt {1 + 2\tan \frac{\pi }{4}} }} = \frac{1}{{\frac{1}{2}.\sqrt {1 + 2} }} = \frac{2}{{\sqrt 3 }}\)
Chọn D.
-- Mod Toán 11
Copyright © 2021 HOCTAP247